Natural catastrophes and
man-made disasters in 2016:
a year of widespread damages

01 Executive summary
02 Catastrophes in 2016: global overview
06 Regional overview
13 Floods in the US - an underinsured risk
18 Tables for reporting year 2016
40 Terms and selection criteria

## Executive summary

There were a number of expansive disaster events in 2016
.. leading to the highest level of overall losses since 2012.

Insured losses from catastrophes were USD 54 billion, meaning many thousands caught in a disaster were better able to recover from the losses and hardships inflicted

Nevertheless, the global catastrophe protection gap remains substantial.

This sigma includes a feature on underinsurance of flood risk in the US

In terms of devastation wreaked, there were a number of large-scale disasters across the world in 2016, including earthquakes in Japan, Ecuador, Tanzania, Italy and New Zealand. There were also a number of severe floods in the US and across Europe and Asia, and a record high number of weather events in the US. The strongest was Hurricane Matthew, which became the first Category 5 storm to form over the North Atlantic since 2007, and which caused the largest loss of life - more than 700 victims, mostly in Haiti - of a single event in the year. Another expansive, and expensive, disaster was the wildfire that spread through Alberta and Saskatchewan in Canada from May to July.

In total, in sigma criteria terms, there were 327 disaster events in 2016, of which 191 were natural catastrophes and 136 were man-made. Globally, approximately 11000 people lost their lives or went missing in disasters. At USD 175 billion, total economic losses ${ }^{1}$ from disasters in 2016 were the highest since 2012, and a significant increase from USD 94 billion in 2015. As in the previous four years, Asia was hardest hit. The earthquake that hit Japan's Kyushu Island inflicted the heaviest economic losses, estimated to be between USD 25 billion and USD 30 billion.

Global insured losses from catastrophes were also the highest since 2012, at around USD 54 billion in 2016, up from USD 38 billion in 2015. The implication of the increase is that many tens of thousands of policyholders in disaster events benefitted from having insurance cover in place, to receive speedy indemnification for their property losses, get their businesses back up and running quickly, and mitigate other economic and humanitarian hardships. For example, the wildfires in Canada devastated many homes and around 88000 people were evacuated. In response, once the evacuation order was lifted, insurance personnel were given access to the affected regions to provide immediate assistance to returning residents. The outcome was that $68 \%$ of all personal property claims had been settled by the end of the year. ${ }^{2}$ Another example was Hurricane Matthew, where a USD 23.4 million payout from the Caribbean Catastrophe Risk Insurance Facility to Haiti meant that thousands of displaced persons received food and shelter, and the authorities were able to buy medications. ${ }^{3}$ A testimony to the positive impact of public/private partnership in insurance.

However, insurance cover is not universal. There was an all-peril global catastrophe protection gap of USD 121 billion in 2016. So while a high-level of insurance penetration in New Zealand meant that households and business were well equipped to recover from the damage caused by the quake that struck the South Island in October 2016, less than 20\% (USD 4.9 billion) of the economic losses resulting from the earthquake in Kyushu Island were covered by insurance. And in Ecuador, the quake on the same day as the one in Japan caused estimated economic losses of USD 4 billion and insured losses of just USD 0.5 billion, a coverage schism of USD 3.5 billion, or $88 \%$.

2016 was also a year of many severe precipitation events globally which in turn triggered major flooding over large areas. The US experienced multiple severe floods throughout the year, with Louisiana worst hit. In China there was extensive flooding along the Yangtze River basin in July. In view of the year's many damaging floods, this sigma assesses the flood protection gap in the US. Increased wealth and larger populations have elevated society's exposure to flood risk everywhere in the world, including the US. Today the majority of US flood coverage comes from the National Flood Insurance Program (NFIP), but the flood protection gap of around USD 10 billion annually shows that even the US remains critically under-insured for flood risk.

[^0]
## Catastrophes in 2016: global overview

There were 191 natural and
136 man-made disasters in 2016

Figure 1
Number of catastrophic events, 1970-2016

## Table 1

The sigma event selection criteria for 2016

Approximately 7000 people died or went missing in natural catastrophes ...

## Number of events: 327

In sigma criteria terms, there were 327 catastrophes worldwide in 2016, down from 356 in 2015. There were 191 were natural catastrophes compared with 199 in 2015, and 136 man-made disasters (down from 157).

300


Source: Cat Perils and Swiss Re Institute.

To classify as a catastrophe according to sigma criteria, an event must lead to economic losses, insured claims or casualties in excess of the thresholds detailed in Table 1.

Insured losses (claims)

| Maritime disasters | USD 19.9 million |  |
| :--- | :--- | ---: |
|  | Aviation | USD 39.8 million |
| Other losses | USD 49.5 million |  |
| or Total economic losses | USD 99.0 million |  |
| or Casualties |  |  |
|  | 20 |  |
|  | 50 |  |
| Homeless | 2000 |  |

Source: Cat Perils and Swiss Re Institute.

Number of victims: approximately 11000
Approximately 11000 people lost their lives or went missing in natural and manmade disasters in 2016. That was lower than in 2015 and one of the lowest recorded in a single year. There were approximately 7000 victims in natural catastrophes. Hurricane Matthew in Haiti and the earthquake that struck Ecuador in April claimed most lives, and a number of people also died in heat waves and floods in other countries.
. and around 4000 perished in man-made disasters.

Airplane crashes and other man-made disasters claimed many victims

## Figure 2

Number of victims, 1970-2016

1 1970: Bangladesh storm
2 1976: Tangshan earthquake, China
3 1991: Cyclone Gorky, Bangladesh
4 2004: Indian Ocean earthquake and tsunami
5 2008: Cyclone Nargis, Myanmar
6 2010: Haiti earthquake
7 2013: Typhoon Haiyan, Philippines
8 2015: Earthquake in Nepal

Economic losses in 2016 in line with the 10-year average.

Global natural catastrophe-related losses were around USD 166 billion.

There were roughly 4000 deaths in man-made disasters in 2016, compared with around 7000 in 2015. A boat carrying migrants sank off the coast of Crete on 3 June 2016, an accident in which 358 perished. The total number of reported deaths in maritime disasters fell to 1596 from 2487 in 2015, but many more are believed to have died in unreported incidents of boats carrying migrants sinking

Other man-made events taking many lives included the collapse of a church roof in Nigeria, killing 160 people. In aviation disasters, 384 people died compared with 685 in 2015, with most of the fatalities in two plane crashes. In November, a jet travelling to Medellín in Colombia crashed after running out of fuel, killing 71. And on Christmas Day, an aircraft crashed shortly after take-off from Adler in Russia, killing 92. There were also 766 deaths in major fire and explosion events in 2016.

10000000

1000000


Note: Scale is logarithmic: the number of victims increases tenfold per band.
Source: Cat Perils and Swiss Re Institute.

## Total economic losses: USD 175 billion

Economic losses from natural catastrophes and man-made disasters across the world were an estimated USD 175 billion in 2016. This was almost double than in 2015 (USD 94 billion), and in line with the inflation-adjusted average of USD 175 billion of the previous 10 years. Catastrophe losses in 2016 were $0.24 \%$ of global gross domestic product (GDP), again in line with the 10-year average.

Natural catastrophe-related economic losses were around USD 166 billion in 2016, coming mostly from earthquakes, tropical cyclones, other severe storms and droughts in Asia, North America and Europe. Man-made disasters are estimated to have caused USD 9 billion of the economic losses, down from USD 12 billion in 2015.

Table 2
Economic losses in USD billion and as a \% of global GDP, 2016

Insured losses from natural hazards and man-made disasters were in line with the 10-year annual average ...

## ... and equivalent to $0.07 \%$ of GDP.

## Figure 3

Insured catastrophe losses 1970-2016 in USD billion, at 2016 prices

1 1992: Hurricane Andrew
2 1994: Northridge earthquake
1999: Winter Storm Lothar
2001: 9/11 attacks
2004: Hurricanes Ivan, Charley, Frances
2005: Hurricanes Katrina, Rita, Wilma
2008: Hurricanes Ike, Gustav
2010: Chile, New Zealand earthquakes
2011: Japan, New Zealand earthquakes, Thailand flood
10 2012: Hurricane Sandy

| Regions | USD bn* | $\%$ of GDP |
| :--- | ---: | ---: |
| North America | 59 | $0.29 \%$ |
| Latin America \&Caribbean | 6 | $0.14 \%$ |
| Europe | 16 | $0.08 \%$ |
| Africa | 3 | $0.14 \%$ |
| Asia | 83 | $0.32 \%$ |
| Oceania/Australia | 6 | $0.45 \%$ |
| Seas /space | 1 |  |
| Total | $\mathbf{1 7 5}$ |  |
| World total |  | $\mathbf{0 . 2 4 \%}$ |
| 10-year average** | $\mathbf{1 7 5}$ | $0.24 \%$ |

* rounded
** inflation adjusted
Source: Swiss Re Institute.


## Insured losses: USD 54 billion

The insurance industry covered close to USD 54 billion - less than one third of the economic losses from natural and man-made disasters in 2016, up from USD 38 billion in 2015 and in line with the inflation-adjusted annual average of the previous 10 years (USD 53 billion). Natural catastrophes resulted in claims of USD 46 billion, the same as the previous 10-year annual average. Insured losses from man-made disasters were USD 8 billion, down from USD 10 billion in 2015.

The natural catastrophe-associated insured losses were 0.06\% of world GDP in 2016 and $2.9 \%$ of global property direct premiums written (DPW), in line with the respective 10-year annual averages. Overall insured losses from natural catastrophes and man-made disasters were $0.07 \%$ of GDP and $3.4 \%$ of DPW.


Source: Cat Perils and Swiss Re Institute.

The largest single insurance-loss event of 2016 was the earthquake in Japan in April.

The global insurance protection gap was USD 121 billion in 2016.

The largest insurance loss event globally in 2016 was the earthquake in Japan in April, which triggered claims of USD 4.9 billion. The second costliest was Hurricane Matthew in the US and the Caribbean, which resulted in insured losses of USD 4 billion. Twelve disasters triggered insured claims of USD 1 billion or more in 2016 (see Table 7), up from six such events in 2015.

Figure 4 shows the difference between insured and economic losses over time, termed the insurance protection gap. It is the amount of financial loss generated by catastrophes not covered by insurance. In 2016, the global protection gap was approximately USD 121 billion. The rate of growth of economic losses has outpaced the growth of insured losses over the last 25 years. In terms of 10-year rolling averages, insured losses grew by 4.6\% between 1991 and 2016, and economic losses by 5.6\%.

450


Economic losses $=$ insured + uninsured losses
Source: Cat Perils and Swiss Re Institute.

## Regional overview

By region, insured losses were highest in North America in 2016.

Number of events, victims, economic and insured losses by region, 2016

Severe weather, floods and wildfires caused most losses.

The number of storms in the North Atlantic hurricane season was above the long-term average.

Hurricane Matthew brought wind and flood damage to southeast US.

Moisture from the Gulf of Mexico triggered pluvial flooding in Louisiana

Earthquakes, tropical cyclones and other storms in many parts of the world caused the highest insured losses in 2016. In Asia, the earthquake in Japan in April led to the biggest losses in the region, in both economic and insured loss terms. In the US, Hurricane Matthew and flooding in Louisiana caused the largest economic losses.

| Region | Number | Victims | in \% | Insured losses |  | Economic losses |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | in USDbn | in \% | in USD bn | in \% |
| North America | 66 | 1005 | 9.2\% | 30.4 | 56.6\% | 59.5 | 34.1\% |
| Latin America \& Caribbean | 22 | 1009 | 9.3\% | 1.4 | 2.5\% | 6.4 | 3.7\% |
| Europe | 51 | 1509 | 13.8\% | 7.5 | 14.0\% | 15.5 | 8.9\% |
| Africa | 44 | 1761 | 16.2\% | 1.7 | 3.2\% | 3.0 | 1.7\% |
| Asia | 128 | 5309 | 48.7\% | 8.8 | 16.4\% | 83.0 | 47.6\% |
| Oceania/Australia | 7 | 52 | 0.5\% | 3.4 | 6.4\% | 6.4 | 3.6\% |
| Seas / space | 9 | 253 | 2.3\% | 0.5 | 0.9\% | 0.8 | 0.4\% |
| World* | 327 | 10898 | 100.0\% | 54 | 100.0\% | 175 | 100.0\% |

*Includes some rounded totals.
Source: Cat Perils and Swiss Re Institute.

## North America

In North America, insured losses from disaster events were USD 30 billion in 2016, the highest of all regions. Most of the losses came from hurricanes, hailstorms, thunderstorms and severe flood events in the US. In Canada, wildfires from May to July caused the highest insured losses ever recorded there.

The 2016 North Atlantic hurricane season produced 15 named storms (11 in 2015), seven of which became hurricanes (four in 2015) and three were "major" hurricanes (Category 3 or stronger on the Saffir-Simpson scale). Hurricane Hermine in early September was the first to make landfall in Florida since Wilma in 2005, coming in at Category 1. Later that same month, Hurricane Matthew, the strongest of the season, became the first Category 5 storm to form over the North Atlantic since Hurricane Felix in 2007. Hurricane Matthew hit Haiti as Category 4 but by the time it made US landfall in South Carolina, it had weakened to Category 1. Last year continued the decade-long stretch of no "major" hurricanes making US landfall, the longest since the 1860s.

Hurricane Matthew and resulting storm surge caused wind and flood damage, beach erosion and infrastructure damage in Florida through North Carolina. Long after moving in from the eastern seaboard, moisture from record sea surface temperatures and associated storms brought downpours and inland flooding in the Carolinas, Georgia and Virginia, leading to heavy damage to agriculture. Economic losses from Matthew in the US and the Caribbean were approximately USD 12 billion, of which about USD 4 billion were insured. It could have been worse if, at Category 4, the centre of the storm had not stayed offshore. But if the US was spared the worst, the Caribbean was not. The Category 4 winds that hit Haiti caused devastation and took many lives there, and also in Cuba and the Bahamas.

In mid-August, moisture from the Gulf of Mexico brought record precipitation over the Amite and Comite rivers basins, triggering major flooding particularly in the region of Baton Rouge, the capital of the State of Louisiana. More than 30000 people had to be rescued from floodwaters and, at the height of the flood, 100000 people were displaced. Sadly, 13 people died. As water receded, 50000 houses, 20000 vehicles and 20000 businesses were left damaged or destroyed, leading to estimated economic losses of USD 10 billion. The insured losses, however, were USD 3.1 billion, evidence of a large flood protection gap.

Tornado activity was below average, while insured losses from severe convective storms were above usual.

The costliest fire event in North America in 2016 was the Fort McMurray wildfire in Canada.

Warmer and drier climate will create favourable conditions for wildfires.

Climate-influenced conditions allowed for rapid spread of the fire.

The Fort McMurray wildfire resulted in Canada's largest insured loss ever.

According to a preliminary count from the Storm Prediction Centre of the National Oceanic and Atmospheric Administration (NOAA), there were 1060 tornadoes in the US in 2016, below the annual average of 1221 of the Doppler radar era. Nevertheless, insured losses from tornado outbreaks and thunderstorms (severe convective storms) reached an estimated USD 15 billion, higher than in 2015 (USD 9.7 billion) and also higher than the previous 10-year annual average of USD 12.6 billion. In the spring, two severe hailstorms in Texas led to combined insured losses of about USD 4.7 billion. There were four independent severe convective storms in the US that caused losses of USD 1 billion or more, compared to just one in 2015. And there were 33 thunderstorms in 2016, a record high.

Other parts of the US and North America experienced severe dry weather conditions, and there were several wildfires. The most destructive in terms of buildings destroyed and number of hectares burnt was the Fort McMurray fire in Alberta, Canada. The resulting insured losses were close to USD 2.8 billion², making it the biggest insurance loss event ever in Canada, and the second costliest wildfire on sigma records, globally.

Scientists expect an increase in both the frequency and the severity of wildfires as a result of climate change, ${ }^{5}$ with warmer and drier climates providing favourable conditions for burning. For example, the length of wildfire season has extended by 2.5 months over the last 30 years, according to the World Resources Institute. ${ }^{6}$ Modest changes to precipitation rates and temperature can greatly influence conditions for large fires. An estimated $2^{\circ} \mathrm{C}$ mean temperature increase could extend the annual area burned in wildfires by 1.4 to 5 times in western US states, according to scientists publishing in Conservation Biology. ${ }^{7}$ These large fires are also costly. In 2015, the US Forest Service spent more than half its annual budget combating forest fires. In 1995, fighting fires took up 16\% of the budget. ${ }^{8}$

## Canada burning: growing exposure yields large wildfire losses

The Fort McMurray wildfire spread through Alberta and Saskatchewan from May to July 2016. The exact cause of the fire is unknown, but the authorities suspect it was due to human activity. Once ignited, high temperatures, low humidity and strong gusting winds contributed to the rapid spread of the fire. In addition, below-average precipitation rates in the preceding autumn and low snowfall in the winter associated with El Niño had dried out the vegetation, providing ample fuel for the flames to grow. The fire was declared contained on 5 July, having damaged approximately 2400 structures in Fort McMurray and burnt 590000 hectares of forest land. During the course of the fire, 88000 residents were evacuated from impacted areas.

Economic losses from the Fort McMurray fire were an estimated USD 3.95 billion. ${ }^{9}$ Statistics Canada estimates that 7.6 million net work hours were lost due to the fire in the Fort McMurray area, and the rest of Alberta experienced a loss of 2.9 million work hours. ${ }^{10}$ The overall financial impact, including indirect losses such as lost work hours, could be as high as USD 7 billion (CAD 9.5 billion). ${ }^{11}$ During the fire, crude

4 Data from CatlQ.
${ }^{5}$ Chmura et al., "Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management", Forest Ecology and Management, 2011.
${ }^{6}$ Western U.S. Wildfires and the Climate Change Connection, World Resources Institute, September 2014, http://climatechange.Ita.org/wildfires/
7 McKenzie et al., "Climate change, wildfire and conservation", Conservation Biology, vol. 18, issue 4 . 2004.

8 The Rising Cost of Fire Operations: Effects on the Forest Service's Non-fire Work, United States Department of Agriculture, 4 August 2015, https://www.fs.fed.us/sites/default/files/2015-Fire-BudgetReport.pdf
9 Economic Impacts of the 2016 Alberta Wildfires, The Conference Board of Canada, 17 May 2016, http://www.conferenceboard.ca/press/newsrelease/16-05-17/economic_impacts_of_the_fort_ mcmurray_wildfires.aspx
${ }^{10}$ Wildfires in northern Alberta: Impact on hours worked, May and June, 2016, Statistics Canada, 25 November 2016 http://www.statcan.gc.ca/daily-quotidien/161125/dq161125a-eng.htm
${ }^{11}$ "Financial impact of Fort McMurray wildfire reaches $\$ 9.5$ billion: study", Canadian Underwriter, 17 January 2017, http://www.canadianunderwriter.ca/catastrophes/financial-impact-fort-mcmurray-wildfire-reaches-9-5-billion-study-1004107558/

The expansion of oil sand operations and subsequent increased exposures contributed to the large losses,
... and the exposures are only likely to grow further.

## Figure 5

Insured losses from wildfires in the US, Canada and Australia 1980-2016 in USD billion, at 2016 prices

The McMurray fire is the second costliest wildfire on record.
bitumen and synthetic crude oil production was reduced by 47 million barrels. The Conference Board of Canada estimates USD 1 billion in lost revenue. From the insurance perspective, the fire was the costliest event ever in Canada. The insured losses were USD 2.8 billion, nearly double the previous highest insurance event in the country, the flooding in Alberta in 2013. The associated high insurance penetration rates in the area, the proximity of the fire to the city of Fort McMurray, and the devastation of many surrounding neighbourhoods led to the record loss.

Canada has the third largest oil reserves in the world, nearly all of which are in Alberta's oil sands. ${ }^{12}$ The production capacity of the area has increased substantially, from about 1 million to more than 2 million barrels a day over the last decade. Alongside the build-up of production assets, the population of the Fort McMurray area - the Regional Municipality of Wood Buffalo - has grown rapidly to a pre-fire population of nearly 72000 permanent residents, according to Statistics Canada. This in turn has pushed up property prices and the overall value of asset exposure. The municipality's economic report from late 2014 said the average home price in the areas was USD 459000 , well above average prices in cities such as Calgary or Edmonton, and the average household income is one of the highest in the whole country.

Wildfires are an-ever present hazard in the forest and grassland regions of Canada and North America, and are an essential part of the forest ecosystem. Figure 5 shows the insured losses from wildfires in the US, Canada and Australia, which together account for the great majority of fire-related losses globally. Most fires do not threaten communities, but some destroy vast expanses of timber resources. Insured losses from wildfires have been growing since 1980, and this is likely to continue as exposures in wildfire-prone regions continue to increase given expanding populations, the building of more property and infrastructure, and the possible effects of changing climates such as warmer and drier seasons.

9


[^1]Source: Cat Perils and Swiss Re Institute.

The Fort McMurray fire is the second costliest wildfire on sigma records. Only the 1991 Oakland Hills, California, fire resulted in higher insured losses (USD 3 billion).

[^2]
## Figure 6

Costliest wildfires events 1980-2016
in USD billion, at 2016 prices

Earthquakes and flooding caused the heaviest losses in Europe.

Central Italy was repeatedly hit by earthquakes in August and October.

The country has a long history of damaging quakes.
3.5


Source: Cat Perils and Swiss Re Institute.

## Europe

In Europe, economic losses from natural and man-made disasters were USD 15.5 billion in 2016, of which USD 7.5 billion were covered by the insurance industry. Most of the losses came from earthquakes in Italy, and thunderstorms and pluvial floods in central Europe.

On 24 August 2016, a magnitude 6.2 earthquake hit the Apennines Mountains in central Italy, killing 299 people and devastating the small towns of Amatrice, Accumoli and Pescara del Tronto. The event was just the first of an extended series of damaging quakes in the region. On 26 October 2016, two aftershocks of magnitude 5.5 and 6.1 hit Visso, north of Amatrice, and on 30 October, a magnitude 6.6 quake struck Norcia, which lies between Amatrice and Visso. That last seism was the most powerful to hit Italy since 1980 and was felt through most of the country. The October shocks did not claim any lives thanks to the widespread evacuation of the area after the August quake, but they did add to the damage and destruction of buildings already weakened by the earlier earthquake event, and displaced thousands of residents. The combined economic losses from all the quakes were USD 6 billion, only a fraction of which were insured. The area is mainly rural, mountainous and scarcely populated, but the shallow depth of the tremors and the unreinforced buildings magnified the impact of the quakes.

Italy's first seismic building code dates to 1909, but seismic mapping of the whole country only came into effect in 2003. Italy has a long history of damaging earthquakes. In 1908, Messina in Sicily was hit by a magnitude 7.2 earthquake and tsunami that claimed about 86000 victims, making it the deadliest earthquake documented in Europe. A few years later, in 1915 a magnitude 7.0 quake struck the same area as the 2016 shakes, killing more than 30000 people. And as Table 4 shows, six of the top 10 costliest earthquakes in Europe since 1970 have been in Italy.

## Regional overview

## Table 4

Costliest earthquakes in Europe since 1970 in USD billion, at 2016 prices

In 2016, parts of Europe were hit by heavy rains and widespread flooding.

There were also several terror attacks in Europe last year.

Asia has suffered the biggest losses from catastrophic events for five years running

|  | Year | Country | Location | Economic Losses |
| ---: | :--- | :--- | :--- | ---: |
| 1 | 1980 | Italy | Irpinia | 34.4 |
| 2 | 1999 | Turkey | Izmit | 28.8 |
| 3 | 1976 | Italy | Friuli | 14.6 |
| 4 | 2012 | Italy | Emilia Romagna (2 events) | 17.3 |
| 5 | 1977 | Romania | Vrancea | 6.7 |
| 6 | 2016 | Italy | Central Italy (2 events) | 6 |
| 7 | 1999 | Greece | Athens | 4.9 |
| 8 | 1979 | Montenegro | Ulcinj | 4.6 |
| 9 | 2009 | Italy | L'Aquila | 4 |
| 10 | 1997 | Italy | Umbria | 3 |

Source: Cat Perils and Swiss Re Institute.

Europe also suffered heavy storms and subsequent flooding events in 2016. At the end of May and beginning of June, thunderstorms, torrential rain and flooding - river and flash floods - hit France, southern and central Germany and Belgium, leading to combined insured losses of USD 2.9 billion. According to the Deutscher Wetterdienst (German Weather Service), the flash floods were the worst ever seen in Germany.

Once again, terrorists targeted Europe in 2016. The deadliest attack was in Nice during Bastille Day celebrations, when a lorry ploughed through a crowd of people, killing 84 people and injuring 202.

## Asia

As in the previous four years, in 2016 Asia suffered higher economic losses due to natural and man-made catastrophes than any other region of the world. Economic losses from disaster events in Asia were an estimated USD 83 billion in 2016, of which approximately USD 9 billion were covered by insurance. The most destructive event was the magnitude 7.0 earthquake that hit Kyushu Island in southern Japan, close to the city of Kumamoto on 16 April 2016. It was the main quake of a series of notable fore- and aftershocks that stretched from 14 April to 19 April. A total of 137 people died and close to 2000 people were injured. The earthquake triggered landslides that complicated disaster relief efforts. More than 8500 buildings were destroyed, and an estimated 160000 buildings were damaged. Economic losses were estimated to be between USD 25 billion and USD 30 billion, of which USD 4.9 billion were insured.

China suffered many damaging floods in 2016, the most devastating along Yangtze River basin in July. Extreme rainfall caused pluvial and river floods, and also landslides in 11 provinces, with Hubei worst hit. The spread of the floods was accelerated by many localised precipitation events which caused the Yangtze and its tributaries to overflow. Economic losses were estimated at USD 22 billion, making it the costliest Yangtze River flood event since 1998. Since the 1998 floods, there has been massive investment in flood defences, and these helped curtail the economic losses in 2016. With low insurance penetration, however, insured losses from the 2016 floods were just USD 0.4 billion.

Insured losses in Latin America were over USD 1 billion in 2016

A powerful earthquake hit Ecuador the deadliest earthquake of the year.

Hurricane Matthew brought devastation to the Caribbean

An earthquake on New Zealand's South sland was the biggest insurance loss event in Oceania.

Damage from subsequent landslides can cut supply chains

The Category 5 Cyclone Winston caused large losses in Fiji ..
while it was a relatively quiet year for natural catastrophes in Australia.

## Latin America and the Caribbean

Natural catastrophes and man-made disasters caused economic losses of more than USD 6 billion in Latin America and the Caribbean in 2016. Insured losses were approximately USD 1.4 billion. The main drivers were earthquakes, hurricanes and floods.

A magnitude 7.8 earthquake struck offshore near the central coast of Ecuador on the same day (16 April 2016) as the quake that stuck Kyushu Island in Japan. In Ecuador, there were 673 victims in the earthquake, along with widespread damage in the provinces of Esmeraldas and Manabí. This was the deadliest earthquake of 2016 globally and, with estimated economic losses of USD 4 billion, the costliest natural catastrophe event in Ecuador on sigma records. Insured losses, however, were just USD 0.5 billion.

Later in the year, Hurricane Matthew made landfall in the southern provinces of Haiti on 4 October 2016 as a Category 4 storm, the first since 1964. It also made landfall in Cuba and the Bahamas, but most of the devastation was in Haiti. There 674 people lost their lives, the deadliest event to hit Haiti since the earthquake in 2010.

## Oceania

Disaster events in Oceania triggered insured losses of USD 3.4 billion in 2016. The 13 November 2016 earthquake with magnitude of 7.8 on New Zealand's South Island caused most losses. The epicentre of the quake was around 93 km north of Christchurch and caused widespread damage in Kaikoura, a small tourist town. It also ruptured a series of six faults along the northeastern coast of the South Island. This was the most damaging quake in New Zealand since the shocks in 2010 and 2011 nearer to Christchurch. Last year's earthquake was stronger than in 2010/2011, but at USD 1.7 billion to USD 2.4 billion, the insured losses were lower because the quake struck a less heavily populated area.

The earthquake did trigger a tsunami, but the effect of the latter was dampened by coastal uplift which occurred during the shock, and also because the tsunami occurred at low tide. Geologists estimate that there were between 80000 and 100000 landslides in the aftermath of the quake. ${ }^{13}$ Landslides can disrupt the flow of water and create landslide dams, which can pose additional hazards if the dams break. Landslides can also leave much debris and cut businesses and communities off from their supply chains and transportation routes.

Earlier in the year, in February the Category 5 Tropical Cyclone Winston hit Fiji. Winds up to $295 \mathrm{~km} / \mathrm{h}$ and a storm surge cut a path of destruction across all four divisions of Fiji, claiming 44 lives. Overall, it caused economic losses of USD 1.4 billion ( $31 \%$ of GDP ${ }^{14}$ ), including severe losses for local sugar plantations.

In Australia, a winter storm - an East Coast Low - brought damaging winds, large waves, coastal erosion, and very heavy rainfall between 4-7 June 2016, causing flooding in areas of southeast Queensland, eastern New South Wales, eastern Victoria and large areas of northern Tasmania. The estimated insured losses were USD 0.3 billion. There were also some small wildfire and severe weather events in Australia, but their overall associated losses were below average.

[^3]
## Regional overview

In Africa, approximately 1800 people died in disaster events in 2016.

## Africa

Natural catastrophes and man-made disasters in Africa claimed approximately 1800 lives and caused economic losses of close to USD 3 billion in 2016. Insured losses were USD 1.7 billion, mostly relating to claims for accidents in oil and gas facilities. A magnitude 5.9 earthquake hit near the west shore of the Lake Victoria Basin between Tanzania, Uganda and Rwanda. The area is predominantly rural and $41 \%$ of the buildings are made of mud ${ }^{15}$ and are hence vulnerable to quakes, and 117721 people lost their homes.

Economic losses from all earthquakes in 2016 were USD 43 billion. The associated insured losses were just USD 9 billion.

The earthquake protection gap is as much an advanced as an emerging market problem.

For example, In Italy just 1\% of residential buildings are insured for earthquake risk.

The New Zealand experience demonstrates the positive benefit that earthquake insurance offers

Many communities are exposed to earthquakes, but have no form of associated risk protection.

## A year of strong earthquakes and high uninsured losses

There were several major earthquakes in 2016, including the almost simultaneous quakes that struck Japan and Ecuador on 16 April 2016, and others in Italy and New Zealand later in the year. The combined economic loss of all seismic shocks in 2016 was an estimated USD 43 billion, of which around USD 9 billion was covered by insurance, signalling a still-large earthquake protection gap.

The protection gap is a global, not just an emerging market issue. Yes, the earthquake in Ecuador did cause economic losses of USD 4 billion and insured losses of just USD 0.5 billion. But the coverage schism is no less dramatic in many advanced markets. The quake in Japan on the same day resulted in economic losses of USD 25 billion to USD 30 billion, while insured losses were USD 4.9 billion. This was the second costliest earthquake in Japan in terms of insured claims on sigma records, primarily because of the increased uptake of residential property earthquake insurance since the Kobe earthquake of 1995. On the other hand, the level of earthquake insurance penetration for commercial property in Japan is among the lowest of the advanced countries, in spite of Japan being very prone to earthquakes.

It is a similar story in Italy, which is also earthquake-prone. The quakes that hit central Italy in August and October caused combined economic losses of USD 6 billion and insured losses of just about USD 0.2 billion, according to Perils AG. Italy is the eighth largest economy in the world, but just $1 \%$ of residential buildings are insured against quake risk. Historically, the state has intervened with ex-post disaster programmes set up under the pressure of the emergency, resulting in long-lasting and much-more-than-budgeted-for reconstruction drives. Public debate regarding the need for increased insurance penetration, or for alternative public solutions, arises in the wake of each disaster. But to date, no associated legislation has been enacted.

At the opposite end of the spectrum is New Zealand. According to the New Zealand Earthquake Commission, about 95\% of buildings carry earthquake coverage, ${ }^{16}$ due to a government-based initiative to promote public- and private-sector insurance schemes. Earthquake cover is provided to those who have bought private fire (property) insurance, which most people have. That means in New Zealand, households and businesses are better equipped to cope with a major earthquake event. Hence, while the October 2016 resulted in economic losses of USD 3.9 billion, of those USD 1.7-2.4 billion were covered by some form of insurance solution.

The low frequency of major earthquakes creates a false perception among exposed populations that earthquakes are not a major risk. This, and the absence of government awareness campaigns, means that the take-up rates of insurance protection remain low. The series of earthquakes in 2016 are not the biggest seismic events to have ever occurred. However, the death and destruction caused by these quakes is a stark reminder of the vulnerability of many people around the world.

[^4]
## Floods in the US - an underinsured risk

Heavy rains in Louisiana in 2016 caused the biggest flood losses in the US since Hurricane Sandy in 2012.

## A long history of floods

The US has suffered many major flood events over the course of its history. Figure 7 shows the level of flood related insurance losses covered by the US National Flood Insurance Program (NFIP), the public-sector and largest insurer of residential flood risk in the US, since 1978. Last year was no exception in the history of water inundation. The worst event was in mid-August, when extreme rainfall triggered major inland flooding in southern Louisiana and Mississippi, resulting in economic losses of US 10 billion. It was the costliest flood event in the US since Hurricane Sandy in 2012, a Category 1 storm that also led to widespread flooding as a result of storm surges on the east coast.


Source: NFIP.

The precipitation was triggered by tropical moisture from the Gulf of Mexico.

Louisiana is highly exposed to flood

In 2016 there were many damaging floods in the US.

## Figure 7

Total US insured NFIP losses by decade, 1978-2016, in USD billion
risk from multiple natural hazards.

The Louisiana and Mississippi floods were the result of a stationary low pressure system combining with tropical moisture from the Gulf of Mexico, bringing record precipitation levels to the Amite and Comite river basins. The rains were heaviest in the south, including in and around Baton Rouge, the state capital of Louisiana. Many rivers burst their banks, flooding adjacent areas. Independent flash- and backwater flooding incidents which covered wide areas added to the havoc.

The topography of southern Louisiana makes the region particularly vulnerable to flooding. It is largely wet and low-lying land, through which many large rivers run, and it is also exposed to the moisture from the Gulf of Mexico. The state has battled with expansive flooding - whether induced by tropical storms, torrential rains or rising waters - from early times. Very memorably, in 2005 it was New Orleans, further south on the coast of Louisiana, that bore most of the damage when the catastrophic failure of the levees let in the waters from the storm surges set off by Hurricane Katrina.

The Louisiana flood was just one of several damaging flood events in the US in 2016. There were four separate multi-billion-dollar-loss inland floods (unrelated to tropical cyclones), the highest number to have occurred in a single year since 1980, according to the NOAA. Three of the floods were clustered in Louisiana and Texas between March and August, causing combined economic losses of USD 16 billion. ${ }^{17}$ And on the eastern seaboard, remnants of Hurricane Matthew caused inland flooding in North Carolina. The US was also hit by heavy floods in 2015, when inland flooding in South Carolina, Texas, Oklahoma, Missouri and the Midwest caused combined losses of more than USD 5 billion.

[^5]The US is exposed to flood risk from storm surges, river overflows and heavy rains.

## Figure 8

Swiss Re US flood zones

## Flood types

The experience of 2016 and recent years demonstrates that the US remains highly vulnerable to flood risk, as Figure 8 also suggests. Floods can come from different sources: in coastal states from storm surges, and inland from heavy precipitation, leading to fluvial (river water) and pluvial (surface water) flooding.


Source: US National Park Service, Swiss Re CatNet ${ }^{\circledR}$

## Storm surges

The most severe water damage in the US is associated with storm surge-driven flooding. Storm surges are when, in a storm, seawater levels rise above tide levels to form powerful flood waves that travel inland. The most dangerous storm surges typically result from tropical cyclones along coastal areas in southeastern states and along the east coast. For instance, most of the loss of life and damage from Hurricane Katrina, the costliest recorded tropical cyclone, was inflicted by storm surges. Saltwater flooding in coastal areas can also be extreme when storm surges coincide with high tides, as was the case in Hurricane Sandy in 2012.

River floods
There are two forms of freshwater flooding. The first is river (fluvial) flooding, which results from a combination of contributing effects. Key drivers are long durations of heavy rainfall, particularly when preceded by heavy snowfall and then rapid snowmelt, filling river basins. Antecedent conditions like saturated soils can accelerate the build-up of water. Flooding occurs when the amount of water exceeds a river's capacity, and the surplus water overflows (breaks) the river's banks. This type of flooding occurs all through the US, but is particularly prevalent in the Midwest due to the confluence of large rivers, heavy precipitation and snowmelt. The Mississippi basin, for example, has been the scene of repeated (documented) major flood events, in 1809, 1825, 1844, 1851, 1927, 1937, 1973, 1993, 2008 and in 2011.

Pluvial floods
The second form of freshwater flooding is pluvial floods. These generally occur when there are large amounts of rainfall which the land surface cannot absorb or, in the case of urban flooding, which overwhelms the drainage system. The floods in Louisiana in 2016 and in South Carolina in 2015 were both pluvial floods.

Tropical moisture can intensify precipitation.

Thunderstorms can also cause pluvial flooding.

Population growth and urbanisation increase national exposure to flood risk.

So too does the likelihood of more frequent extreme weather events.

Even so, the US remains under-insured for flood risk.

The weather systems that trigger extreme precipitation in the US include tropical moisture from the Gulf of Mexico and the Atlantic Ocean, and in the western states moisture from the Pacific. In the west, some of the most dramatic precipitation events are triggered by the so-called pineapple express, a type of atmospheric river consisting of narrow bands of moisture extending from the tropical Pacific Ocean to the coast of California. As the moisture hits the Sierra Nevada mountain range, heavy rains result. This is what happened at the end of 1996 and beginning of 1997, for example, when heavy precipitation led to widespread flooding and localised landslides in the western states of California, Oregon, Washington, Nevada and Idaho.

Extreme precipitation can also result from severe convective activity. For example, the precipitation that led to the 2016 Louisiana flood came from large thunderstorms activity fed by high levels of moisture from the Gulf of Mexico. US severe convective storms - large thunderstorms - are the most violent in the world and can wreak havoc through powerful tornadoes and large hail. But they can also trigger pluvial floods when they unleash extreme precipitation in urban drainage basins. In recent years, metropolitan areas such as Houston, Atlanta, Nashville, Oklahoma City, Dallas, Kansas City, Chicago and Detroit have all suffered severe pluvial flash floods, sometimes repeatedly. While river floods are rare, flash and pluvial floods generally occur frequently. They can happen almost anywhere and with little warning, they can last from a few hours to weeks, and can impact a wide range of spatial ranges, from single catchments or cities to entire river basins across multiple states.

## The US flood protection gap

The US is vast and has a great diversity of climatic regimes, meaning there are also many flood-generating natural hazards. Meantime, population growth and urbanisation has increased the exposure potential. There have been significant investments in infrastructure to mitigate flood hazard and regulate development in flood-prone areas. Nevertheless, urbanisation continues to extend to more floodprone areas. For example, the Houston metropolitan area has expanded rapidly in the past 15 years, with the suburban sprawl spilling onto floodplains prone to flash floods in heavy rains. ${ }^{18}$ In towns and cities there are fewer avenues for water discharge, and urbanisation also leads to more water-impermeable surfaces like roads and parking lots. The multi-billion dollar losses that Houston suffered after two separate inland flood events in 2016 and 2015 are not entirely inexplicable.

Scientists expect flood events to become more frequent as rising temperatures load the atmosphere with more vapour, which will translate into more frequent downpours. The combination of population growth, urban development and more extreme weather events as temperatures rise all point to more extreme flood events also, and an increase in the associated costs.

Yet, the US has been and continues to be critically under-insured with respect to flood risk. Table 5 lists the costliest flood events in the US since 1978 in economic loss terms, expressed in 2016 prices. The numbers estimate the economic losses from water damage only in the individual events, many of which also caused wind damage. The isolation of water-inflicted losses facilitates simple quantification of the protection gap for homeowners in the respective events. Table 5 also indicates the percentage of the losses carried by the NFIP. Using Hurricane Sandy in 2012 as an example, the economic losses from water damage were USD 70 billion, of which $17 \%$ were covered by the NFIP. Despite the NFIP, a significant portion of homeowners were uninsured and had to shoulder losses on their own.

[^6]
## Table 5

Economic losses from US flood events in USD billion, and NFIP losses as a \% of economic losses

| Type of flood | Year | Event | Economic losses <br> from flood <br> damage | NFIP losses as \% of <br> economic losses <br> from flood damage |  |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 1 | Storm surge | 2005 | Hurricane Katrina, storm surge | 140 | $17 \%$ |
| 2 | Storm surge | 2012 | Hurricane Sandy, storm surge | 70 | $17 \%$ |
| 3 | Freshwater | 1993 | Midwest flooding | 57 | $1 \%$ |
| 4 | Storm surge | 2008 | Hurricane Ike, storm surge | 15 | $22 \%$ |
| 5 | Freshwater | 2001 | Tropical storm Allison - inland <br> flood | 15 | $13 \%$ |
| 6 | Freshwater | 2008 | lowa and Midwest flood | 13 | $1 \%$ |
| 7 | Storm surge | 2004 | Hurricane Ivan, storm surge | 11 | $22 \%$ |
| 8 | Freshwater | 2016 | Severe storms and flooding in <br> Louisiana | 10 | $21 \%$ |
| 9 | Freshwater | 1997 | Northern Plains, Upper <br> Midwest flood | 8 | $4 \%$ |
| 10 | Freshwater | 1996 | West Coast Flood | 7 | $1 \%$ |

Note: Economic losses are adjusted for GDP growth.
Source: NFIP, Cat Perils and Swiss Re Institute.

A shortcoming of loss experience from a selection of individual events is that they do not necessarily reveal the true extent of underlying risk. The historical timescale of events in Table 5 is relatively short, and some high impact/low frequency events that may not occur for several decades may be unaccounted for in the data set. For better understanding of the flood protection gap, flood catastrophe models have been developed to provide a more complete view of both high and low frequency events by going back over a longer period of time. Models can also be used to estimate the future impact of more frequent flooding events.

According to Swiss Re's proprietary in-house catastrophe models, economic losses from flood events in the US are expected to amount to USD 15 billion annually. Of the economic losses each year, storm surges are estimated to account for on average USD 8 billion, with inland flooding the cause of the remaining USD 7 billion. And of the economic losses, only USD 5 billion are insured, meaning an annual protection gap of around USD 10 billion. Business segments with a high insurance penetration are commercial and industrial lines, with frequent all-risk policy covers. The gap is largest for small businesses and homeowners, despite the growth in NFIP coverage following the major flood events of past years

The flood protection gap is second only to the expected annual shortfall in earthquake insurance cover (USD 20 billion). The two perils have key differences. While earthquake risk is relatively concentrated in California, flood risk is distributed throughout the US. And while earthquakes are considered a more severe peril, resulting in very high losses, floods tends to occur more frequently, with lower associated losses.

## Closing the protection gap

For the annual expected USD 5 billion in insured flood-related losses in the US, the single largest insurer of residential flood risk is the NFIP, a branch of the Federal Emergency Management Agency (FEMA). The aim of this public scheme is to provide affordable insurance to homeowners and to encourage municipal authorities and communities to adopt and enforce floodplain management regulations and thus mitigate flood risk. There is also a mandatory insurance program, but that's only for federally-backed mortgaged homes in high flood risk zones. On average, about 15\% of US flood losses are borne by NFIP. Besides the NFIP, the private insurance industry does offer a few flood insurance products, but these are very niche (eg, excess NFIP covers for high net value homes) and not widely available. Ultimately, the great majority of US households remain heavily exposed to flood risk, to the tune of USD 10 billion annually. This places a heavy burden on households, society and the economy in general.

Actions for resilience: improve risk awareness and make insurance products simple.

Risk assessments tools are available to manage adverse selection and widen the insurability of flood risk.

Behavioural sciences can help improve consumers' perception of flood insurance

Flood insurance can be available for the majority of US homeowners.

The flood protection gap can be addressed. First, households need better understanding of their exposure. Often homeowners do not grasp the full extent of their exposure to flood risk, or assume they are already covered through their standard homeowner policies. Second, homeowners need access to simple flood insurance products which are easily understood and comprehensive. Third, private/ public partnerships can support financial resilience, for example by supporting covers for homeowners in high-risk zones at affordable prices.

Adverse selection is one of the key reasons for the lack of private flood insurance provision. For premiums to remain affordable and insurance to be sustainable, the risk must be spread among as many policyholders as possible. In the case of floods, reaching such critical mass is more challenging because homeowners can "select against" insurers by buying cover only in areas they consider to be at high risk of flooding. However, today risk assessment tools exist that allow insurers to fairly price flood risk by using location-specific risk based premiums, thus widening the insurability of flood risk. With the ever-changing nature of flood risk, regular updates of flood hazard maps are a necessary foundation for accurate risk assessment. So too is extending the assessment to consider forward-looking climate change studies to provide a basis for long-term sustainable planning.

Several other tools are available to insurers to increase flood risk coverage, including better understanding of behavioural patterns. When deciding to purchase flood insurance, rational decision-making factors such as affordability come into play, but so do behavioural biases like mental barriers or lack of awareness. Evidence shows that people tend to purchase flood insurance based on their experience of past events, and that they stop renewing their cover after enough time has passed since a loss occurred. Recent advances in behavioural sciences can help improve the perception of the value proposition of existing products, and create new concepts on how to offer insurance more effectively. Through a test-and-learn approach, insurance products and customer experiences can be designed in ways that align with the psychology of decision making.

Reinsurance can also play a role in closing the protection gap, and is already doing so. The two largest storm surge events of recent years - Katrina and Sandy generated total claims of USD 24.5 billion, causing severe funding issues for the NFIP. For this reason, in 2017 FEMA purchased reinsurance to offload some of the risk to the private sector. The placement transferred USD 1.042 billion in risk above a USD 4 billion deductible to 25 reinsurance companies. ${ }^{19}$ Closing the flood protection gap in the US requires the collaboration of all stakeholders, in the private and public sectors, and is achievable. The expertise and tools needed to provide comprehensive and affordable flood insurance to most US homeowners are available today.

[^7]
## Tables for reporting year 2016

Table 6
Overall losses in 2016, by peril type

|  | Number | as \% | Victims | as \% | insured loss (in USD mn) | as \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Natural catastrophes | 191 | 58.4\% | 6884 | 63.2\% | 45944 | 85.5\% |
| Earthquakes | 16 |  | 1386 |  | 9046 |  |
| Floods | 65 |  | 3336 |  | 5694 |  |
| Storms | 82 |  | 1640 |  | 20334 |  |
| Drought, bush fires, heat waves | 16 |  | 340 |  | 4664 |  |
| Hail | 6 |  | 0 |  | 6236 |  |
| Cold, frost | 5 |  | 158 |  | 0 |  |
| Other natural catastrophes | 1 |  | 24 |  | 0 |  |
| Man-made disasters | 136 | 41.6\% | 4014 | 36.8\% | 7797 | 14.5\% |
| Mining accidents | 8 |  | 166 |  | 184 |  |
| Rail disasters (incl. cableways) | 11 |  | 318 |  | 87 |  |
| Aviation disasters | 11 | 3.4\% | 384 | 3.5\% | 248 | 0.5\% |
| Crashes | 7 |  | 383 |  | 117 |  |
| Space | 2 |  | 0 |  | 41 |  |
| Damage on ground | 2 |  | 1 |  | 90 |  |
| Major fires, explosions | 47 | 14.5\% | 766 | 7.1\% | 4643 | 8.7\% |
| Other fires, explosions | 5 |  | 159 |  | 617 |  |
| Other buildings | 11 |  | 387 |  | 0 |  |
| Industry, warehouses | 17 |  | 84 |  | 2027 |  |
| Oil, gas | 13 |  | 136 |  | 1921 |  |
| Department stores | 1 |  | 0 |  | 78 |  |
| Miscellaneous | 20 | 6.1\% | 684 | 6.3\% | 173 | 0.3\% |
| Terrorism | 15 |  | 601 |  | 173 |  |
| Other miscellaneous losses | 4 |  | 83 |  | 0 |  |
| Social unrest | 1 |  | 0 |  | 0 |  |
| Maritime disasters | 36 | 11.1\% | 1596 | 14.7\% | 2463 | 4.6\% |
| Tankers | 5 |  | 66 |  | 98 |  |
| Passenger ships | 19 |  | 1530 |  | 0 |  |
| Other maritime accidents | 3 |  | 0 |  | 420 |  |
| Drilling platforms | 9 |  | 0 |  | 1944 |  |
| Collapse of buildings/bridges | 3 | 0.9\% | 100 | 0.9\% | 0 |  |
| Total | 327 | 100.0\% | 10864 | 100.0\% | 53516 | 100.0\% |

[^8]Table 7
The 20 most costly insurance losses in 2016

| Insured loss <br> (in USD mn) | Victims | Date (start) | Event |  |
| ---: | ---: | ---: | :--- | :--- |
| 4887 | 137 | 14.4 .2016 | Earthquakes | Country/region |
| 4000 | 734 | 6.10 .2016 | Hurricane Matthew | Japan |
| 3102 | 13 | 11.8 .2016 | Severe storms and flooding in Louisiana | US and the Caribbean |
| 2995 | - | 10.4 .2016 | Severe hailstorm in San Antonio, TX | US |
| 2886 | 17 | 27.5 .2016 | Storms/floods (low-pressure systems Elvira and Friederike) | US |
| 2782 | - | 2.5 .2016 | Fort McMurray wildfires | Germany, France |
| $1700-$ | 2 | 14.11 .2016 | Earthquake Mw 7.8 | Canada |
| 2400 |  |  |  | New Zealand |
| 1689 | - | 23.3 .2016 | North Texas hailstorm, thunderstorms |  |
| ns | - | 28.2 .2016 | Turret failure at a floating production, storage and offloading (FPSO) vessel | Ghana |
| 1187 | 6 | 29.4 .2016 | Thunderstorms, large hail, tornadoes, flash floods | US |
| 1135 | - | 28.7 .2016 | Thunderstorms, severe hail damage in CO, hailstorm in Wyoming | US |
| 1037 | 8 | 16.4 .2016 | Flash flood, river flood in Houston region from torrential rains | US |
| 920 | 1 | 17.3 .2016 | Thunderstorms, large hail in Forth Worth and Arlington in TX | US |
| 919 | 14 | 28.11 .2016 | Chimney Tops 2 Fire spreads to forest areas in dry conditions | US |
| 874 | 1 | 21.5 .2016 | Thunderstorms, tornadoes, hail | US |
| 764 | 2 | 7.5 .2016 | Thunderstorms, hail, tornadoes | US |
| 666 | - | 11.5 .2016 | Thunderstorms, hail, tornadoes | US |
| 639 | 6 | 25.4 .2016 | Thunderstorms, hail, tornadoes | US |
| 637 | 10 | 22.2 .2016 | Thunderstorms, 50 tornadoes, hail | US, Canada |
| ns* | - | 31.3 .2016 | Steam generator falls and causes damage to nuclear power plant | France |

ns = not showing
Source: Cat Perils and Swiss Re Institute

Table 8
The 20 worst catastrophes in terms of victims in 2016

| Victims | Insured loss <br> (in USD mn) | Date (start) | Event | Country/region |
| :--- | ---: | ---: | :--- | :--- |
| 734 | 4000 | 28.9 .2016 | Hurricane Matthew | US and the Caribbean |
| 673 | 500 | 16.4 .2016 | Earthquake Mw 7.8 | Ecuador |
| 538 | - | 29.8 .2016 | Remnants of Typhoon Lionrock trigger floods along Tumen River | North Korea |
| 358 | - | 3.6 .2016 | Boat carrying migrants capsizes | Greece, Mediterranean Sea |
| 300 | - | 13.4 .2016 | Heat waves | India |
| 299 | 69 | 24.8 .2016 | Earthquake Mw 6.2 | Italy |
| 289 | 403 | 30.6 .2016 | Severe floods along Yangtze River | China |
| 289 | 187 | 18.7 .2016 | Severe floods | China |
| 240 | - | 3.11 .2016 | Boat carrying migrants capsizes | Libyan Arab Jamahiriya |
| 228 | - | 15.7 .2016 | Monsoon floods | India |
| 191 | 104 | 15.5 .2016 | Remnants of Cyclone Roanu bring torrential rains and flooding, | Sri Lanka |
| 178 | - | 21.9 .2016 | Overcrowded boat carrying migrants capsizes |  |
| 160 | - | 10.12 .2016 | Roof of a church collapses during a service | Egypt |
| 151 | - | 1.8 .2016 | Monsoon floods | Nigeria |
| 150 | - | 20.11 .2016 | 14 coaches of a passenger train derail | India |
| 141 | - | 9.3 .2016 | River floods, flash floods, landslides | India |
| 137 | 488 | 14.4 .2016 | Earthquakes | Pakistan |
| 122 | - | 21.7 .2016 | River floods, landslides | Japan |
| 117 | 618 | 6.2 .2016 | Earthquake Mw 6.4 | Nepal |
| 112 | - | 10.4 .2016 | Explosion and fire at a temple in firework display | Taiwan |

[^9]Table 9
Chronological list of all natural catastrophes in 2016


Floods

| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 24.1.-25.1. | Ecuador | Torrential rains cause flash floods | 9 dead |
|  | Esmeraldas, San Lorenzo |  | 2000 homeless |
| 3.2.-6.2. | Mexico | Flash floods caused by torrential rains - over 20000 houses flooded | 2 dead |
|  | Tamaulipas, Veracruz, Chihuahua |  | >3000 homeless |
| 5.2.-24.2. | Indonesia | Floods, landslides - 1767 houses destroyed | 14 dead |
|  | Central Java, West Sumatra, |  | >2000 homeless |
|  | Bangka Belitung, Riau, |  |  |
|  | Jambi |  |  |
| 10.2.-15.2. | Tanzania | Flash floods | 3000 homeless |
|  | Rufiji |  |  |
| 28.2 . | Haiti | River floods, flash floods - 10000 houses flooded | 1 dead, 4 missing |
|  | Grand'Anse, |  | 2000 homeless |
| 29.2.-1.3. | Angola | Flash floods | 29 dead, 25 missing |
|  | Lubango, Huíla |  |  |
| 8.3.-12.3. | United States | Severe flooding along the Sabine River basin on the Texas and Louisiana border - over 1000 buildings damaged or destroyed | 5 dead |
|  | TX, LA, AR, MS |  | USD 333mn insured loss |
|  |  |  | USD 2.3bn total damage |
| 9.3.-29.3. | Pakistan | River floods, flash floods, landslides 857 buildings damaged | 141 dead |
|  | Azad Jammu and Kashmir, |  | 127 injured |
|  | Punjab, Khyber |  |  |
|  | Pakhtunkhwa, Gilgit-Baltistan |  |  |
| 10.3.-11.3. | Brazil | River floods (Pinheiros River), flash floods, landslides | 30 dead |
|  | São Paulo |  | 24 injured |
| 19.3.-23.3. | China | Floods, landslides - 1100 houses destroyed, 72000 houses damaged | 5 dead |
|  | Jiangxi, Hunan, Guangdong, Guangxi, Guizhou |  | USD 170mn total damage |
| 2.4.-4.4. | Afghanistan | Flash floods | 30 dead |
|  | Daykundi, Ghazni, Uruzgan |  |  |
| 2.4.-7.4. | Ethiopia | Floods along Fafen River | 28 dead |
|  | Jigjiga |  | 80 injured |
| 2.4.-8.4. | Pakistan | River floods, flash floods, landslides 1200 buildings damaged | 92 dead |
|  | Khyber Pakhtunkhwa |  | 77 injured |
| 4.4.-15.4. | Argentina | River floods - severe damage to agriculture | 1 dead |
|  | La Paz, Entre Ríos, Santa Fe, |  | 12000 homeless |
|  | Chaco, Corrientes |  | >USD 50mn insured loss |
|  |  |  | USD 1bn total damage |
| 8.4.-10.4. | Malawi | Flash floods | 12 dead |
|  | Mzuzu, Karonga |  | 2800 homeless |
| 15.4.-21.4. | Uruguay, Argentina | Inland floods, river floods along Cabayú Cuatia | 6 dead |
|  | Artigas, Colonia, Durazno, | River, La Paz, Entre Rios | 270 injured |
|  | Paysandú, San José, Treinta y Tres, Montevideo |  |  |
| 16.4.-17.4. | Afghanistan | Flash floods | 31 dead |
|  | Baghlan, Samangan, Takhar, |  |  |
|  | Badghis |  |  |
| 16.4.-19.4. | United States | Flash and river floods in Houston region after torrential rains - over 1000 houses flooded | 8 dead |
|  | Houston, TX, CO |  | USD 1.031bn insured loss |
|  |  |  | USD 2.7bn total damage |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 20.4.-24.4. | Angola <br> Luanda | Flash floods | 19 dead, 4 missing <br> 50 injured <br> 2400 homeless |
| 22.4.-24.4. | Tanzania <br> Morogoro, Kilosa, <br> Kilombero, Malinyi | Remnants of Cyclone Fantala trigger inland flood - 315 houses destroyed, 3095 houses damaged | 13 dead 13933 homeless |
| 28.4.-30.5. | Kenya <br> Nairobi, Turkana, Wajir, <br> Marsabit | River floods along Garissa and Tana rivers, flash floods | 4 dead <br> 6675 homeless |
| 4.5.-11.5. | China <br> Zhejiang, Fujian, Jiangxi, <br> Hubei, Hunan, Guangxi, <br> Chongqing, Sichuan, <br> Guizhou, Yunnan | River floods. landslides - 5200 houses destroyed, 74000 houses damaged | 66 dead USD 700mn total damage |
| 7.5.-8.5. | Rwanda <br> Districts of Gakenke (Nothern Province), Ngororero (Western Province), Muhanga (Southern Province) | Flash floods, landslides - 2317 houses destroyed | 54 dead 4000 homeless |
| 9.5.-20.5. | Ethiopia <br> Oromia, Bale, Southern <br> Nations, Nationalities and <br> People's Region | River floods along Shabelle River, massive landslide in Kindo Didaye | 100 dead |
| 15.5.-19.5. | Sri Lanka Colombo, Gampaha, Kegalle | Remnants of Cyclone Roanu bring torrential rains and flooding, Arananayake landslide - 691 houses destroyed, | 89 dead, 102 missing <br> 50 injured <br> LKR 15.5bn (USD 104mn) insured loss <br> USD 1.2bn total damage |
| 1.6.-28.6. | Myanmar (Burma) <br> Ayeyarwady, Bago, Sagaing | Monsoon floods - 280 houses destroyed, 5000 houses damaged | 14 dead 2000 homeless |
| 17.6.-24.6 | Indonesia <br> Purworejo, Banjarnegara, Kebumen, Sukoharjo, Bahyumas and Rembang, Central Java Province | River floods, flash floods, landslides | 43 dead, 19 missing |
| 18.6.-23.6. | China <br> Hunan, Guizhou, Fujian | Monsoon floods | 35 dead <br> USD 60mn insured loss <br> USD 1.5bn total damage |
| 18.6.-23.6. | China Jiangsu, Zheijiang, Anhui, Jiangxi, Gansu, Shaanxi, Qinghai, Hubei, Hunan, Guangxi | River floods | 31 dead, 6 missing USD 1.5bn total damage |
| 21.6.-16.7. | Burkina Faso <br> Ouagadougou, Kadiogo Province | River floods, flash floods | 4 dead 10 injured 2500 homeless |
| 22.6.-23.6. | United States OH, IN, IL, WV, VA | Thunderstorms, hail, tornadoes, severe flash floods, river floods, landslides and mudslides in West Virginia - 1500 roads damaged or destroyed | 23 dead <br> USD 100-300mn insured loss <br> USD 1bn total damage |
| 27.6.-30.6. | Sudan <br> Sennar | Flash floods - 1160 houses destroyed, 1320 houses damaged | 4000 homeless |
| 30.6.-15.7. | China <br> Jiangsu, Anhui, Jiangxi, <br> Henan, Hubei, Hunan, <br> Guangxi, Chongqing, <br> Sichuan, Guizhou, Yunnan | Severe floods along Yangtze River | 289 dead <br> CNY 3bn (USD 432mn) insured loss USD 22bn total damage |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 1.7.-2.7. | India | Monsoon floods along Alaknanda and | 61 dead |
|  | Chamoli, Pithoragarh, | Mandakini rivers |  |
|  | Uttarakhand State |  |  |
| 3.7.-6.7. | Pakistan | Flash floods | 43 dead |
|  | Chitral District, Khyber |  |  |
|  | Pakhtunkhwa Province |  |  |
| 4.7.-17.7. | India | Monsoon floods | 34 dead |
|  | Jorhat, Golaghat, Assam |  |  |
|  | State |  |  |
| 7.7.-19.7. | India | Monsoon floods - 2360 houses destroyed, | 37 dead, 9 missing |
|  | Bhopal, Shajapur, Jabalpur, | 17236 homes damaged | 2000 homeless |
|  | Satna, Harda, Madhya |  |  |
|  | Pradesh State |  |  |
| 11.7.-23.7. | Mali | River floods, flash floods | 13 dead |
|  | Gao, Mopti Segou, Sikasso |  | 2100 homeless |
| 13.7.-26.8. | Sudan | Flash floods, river floods - >18000 houses | $36 \text { dead }$ |
|  | Kassala, North Darfur, | destroyed, >14000 houses damaged | 147 injured |
|  | Khartoum, Al Jazirah |  | USD 10mn total damage |
| 15.7.-11.8. | Niger | Flash flood, river floods - 1700 houses | 11 dead |
|  | Agadez, Tahoua | destroyed | 3000 homeless |
| 15.7.-20.8. | India | Monsoon floods | 228 dead |
|  | Bihar, Uttar Pradesh |  |  |
| 18.7.-21.7. | China | Severe floods - 125000 houses damaged | 164 dead, 125 missing |
|  | Hebei, Henan, Beijing, | or destroyed | CNY 28.1bn (USD 4.047bn) total damage |
|  | Tianjin, Shanxi, Inner |  |  |
|  | Mongolia Region, Liaoning, |  |  |
|  | Shandong |  |  |
| 21.7.-27.7. | Nepal | River floods, landslides - 374 houses | 122 dead |
|  | Pyuthan, Gulmi, Palpa, | destroyed, 561 houses damaged |  |
|  | Makwanpur, Udaypur, |  |  |
|  | Baglung, Banke, Rupandehi |  |  |
| 24.7.-9.8. | India | Monsoon floods | 36 dead |
|  | Assam |  | USD 150mn total damage |
| 1.8.-22.8. | India | Monsoon floods | 151 dead |
|  | Maharashtra, Madhya |  | USD 300mn total damage |
|  | Pradesh |  |  |
| 6.8.-7.8. | Pakistan | Flash floods, inland floods | 22 dead |
|  | Karachi, Hyderabad, Tando |  | 60 injured |
|  | Allahyar, Mirpur Khas |  |  |
| 8.8.-16.8. | Philippines | Monsoon floods - 276 houses destroyed, | 23 dead, 3 missing |
|  | Llocos Sur, Bataan, | 151 houses damaged | 12 injured |
|  | Pampanga, Negros |  | PHP 665mn (USD 13mn) total damage |
|  | Occidental |  |  |
| 11.8.-31.8. | United States | Severe storms and flooding in Louisiana - | 13 dead |
|  | Louisiana, Mississippi | 50000 houses, 20000 vehicles and | 10000 homeless |
|  |  | 20000 businesses damaged or destroyed, | USD 3.1bn insured loss |
|  |  | 100000 people displaced, more than | USD 10bn total damage |
|  |  | 30000 people rescued from floodwaters |  |
| 29.8.-31.8. | North Korea | Remnants of Typhoon Lionrock trigger floods | 138 dead, 400 missing |
|  | North Hamgyong | along Timern River - 30000 houses damaged or destroyed | USD 61mn total damage |
| 1.9.-20.9. | Nigeria | Seasonal river floods - 6637 houses | 18 dead |
|  | Dutse, Jahun, Hadejia, | destroyed | 12000 homeless |
|  | Babura, Ringim, Gumel, |  |  |
|  | Malammadori, Birninkudu |  |  |
| 11.9 . | South Africa | Flash floods | 6 dead |
|  | Gauteng |  | USD 100mn total damage |
| 20.9.-22.9. | Indonesia | Flash floods, landslides | 53 dead |
|  | Garut |  | USD 22mn total damage |

## Tables for reporting year 2016

| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 21.9.-29.9. | India <br> Andhra Pradesh, Telangana | Floods in Andhra Pradesh | 28 dead <br> INR 3bn (USD 44mn) insured loss <br> INR 40bn (USD 589mn) total damage |
| 28.9.-30.9. | Canada, United States <br> Windsor, Leamington, ON | Flash floods in Windsor, ON and Detroit, MI | USD 108mn insured loss USD 169 mn total damage |
| 3.10.-10.10. | Thailand Nakornsawan Province | River flood - 68000 houses damaged | 4 dead USD 120 mn total damage |
| 9.10.-16.10. | Viet Nam <br> Ha Tinh, Nghe An, Quang Binh, Quang Tri, Thua Thien Hue | River floods | 26 dead |
| 18.10.-22.10. | Colombia Chocó Department | River floods - San Juan River and Condoto rivers burst their banks | 4 dead <br> 2200 homeless |
| 27.10.-29.10. | Egypt <br> Hurghada, Red Sea <br> Governorate | Thunderstorms, flash floods, torrential rains | 29 dead <br> 73 injured |
| 3.11.-5.11. | Mexico <br> Tamaulipas, Veracruz, Chihuahua | Thunderstorms, flash floods, hail 20000 houses damaged | 2 dead <br> 3000 homeless |
| 5.11.-8.11. | Haiti <br> Cap-Haitien, Nord <br> Department; Jérémie, <br> Grand'Anse department | Inland river floods, flash floods, landslides | 13 dead <br> 2 injured <br> 2780 homeless |
| 7.11.-21.11. | Dominican Republic Cabrera, María Trinidad Sánchez | River floods (Tío Marcos, Bajabonico and Angostura rivers) - damage to agriculture | 15 dead 2400 homeless |
| 9.11.-15.11. | Indonesia <br> West Java Province | River flood, flash floods - 5776 houses damaged | 5 dead 6373 homeless |
| 26.11.-5.12. | Spain <br> Malaga, Cadiz, Huelva, <br> Valencia | Floods, rainstorms | 2 dead <br> 1 injured <br> EUR 60mn (USD 63mn) insured loss |
| 21.12.-23.12. | Viet Nam Binh Dinh, Quang Ngai | River floods | 24 dead |
| 27.12 . | Congo, Democratic Republic of (DRC) <br> Boma | Floods along Kalamu River | 50 dead |

## Storms

| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 1.1.-5.1. | Iran | Blizzards, heavy snowfall in 21 provinces | 84 injured |
| 5.1.-8.1. | United States CA | Multiple low pressure systems bring rainstorms, mudslides, debris flow, floods, 1 tornado | USD 25-100mn insured loss |
| 22.1.-24.1. | United States <br> VA, MD, NJ, PA, KY, NC, GA, NY, TN, DE, WV, SC, DC, OH, MA, CT, RI | Winter storm Jonas, strong winds, heavy snowfall, storm surge, coastal flooding, record snow fall in Baltimore, Maryland and New York City, 13000 flights cancelled | 58 dead <br> USD 100-300mn insured loss |
| 23.1.-24.1. | Japan | Winter storm, heavy snowfall | 8 dead 610 injured |
| 29.1.-30.1. | United Kingdom | Winter storm Marita | 1 dead GBP 47mn (USD 58mn) insured loss |
| 31.1.-1.2. | United States Los Angeles, Ventura (CA) | Thunderstorms, flash floods, landslides | USD 25-100m insured loss |
| 7.2. | United Kingdom, France | Winter storm Ruzica-Susanna | USD 168m insured loss |
| 13.2.-15.2. | United States <br> NY, MA, NJ, CT, RI, PA, NH, <br> MD, VT, DC | Winter storm, heavy snowfall, flooding | USD 300-600mn insured loss |
| 19.2.-20.2. | United States IL, MI | Thunderstorms, strong winds | USD 100-300mn insured loss |
| 20.2.-22.2. | Fiji, Tonga | Cyclone Winston Cat 5 with winds up to $295 \mathrm{~km} / \mathrm{h}$ - 11989 houses destroyed, 18380 homes damaged, severe damage to sugar plantations | 44 dead <br> 83 injured <br> USD 50mn insured loss <br> USD 1.351bn total damage |
| 22.2.-25.2. | United States, Canada US: TX, NC, LA, FL, GA, VA, NY, SC, PA, MA, AL, CT, MS, DC, DE, Canada: New Brunswick, Ontario, Quebec | Thunderstorms, 50 recorded tornadoes (1 EF3 in Pensacola, FL - 1 EF3 tornado in Appomattox County, VA), hail in southern and eastern states | 10 dead <br> 56 injured <br> USD 600mn - 1 bn insured loss <br> USD 1.03bn total damage |
| 1.3. | United Kingdom, Ireland | Winter storm Aloisia | 3 dead <br> EUR 85mn (USD 90mn) insured loss |
| 3.3.-9.3. | China <br> Guizhou, Fujian, Yunnan, Kinjiang | Thunderstorms, torrential rains | USD 200mn total damage |
| 5.3.-11.3. | United States LA, TX, CA, MS, AR, TN, OK | Thunderstorms, flooding in California, hail, mudslides | 5 dead <br> USD 300mn-600mn insured loss |
| 8.3.-11.3. | United Arab Emirates, Oman | Thunderstorms, hail, widespread floods | USD 100mn insured loss USD 300mn total damage |
| 13.3.-14.3. | United States SC, AR, NC | Thunderstorms, hail, tornadoes | USD 100mn-300mn insured loss |
| 13.3.-15.3. | United States IL, WA, CA | Thunderstorms, hail, tornadoes | USD 100mn-300mn insured loss |
| 17.3.-18.3. | United States TX, LA, MS, AR, FL, AL | Thunderstorms, large hail in Forth Worth and Arlington in TX | 1 dead <br> USD 600mn-1bn insured loss <br> USD 1.2bn total damage |
| 27.3 . | United States IN | Thunderstorms, hail | USD 25 mn -100m insured loss |
| 27.3.-29.3. | United Kingdom | Winter storm Jeanne | 1 dead GBP 118mn (USD 146mn) insured loss |
| 30.3.-1.4. | United States TX, OK, MS, AR, AL, LA, KS | Thunderstorms, hail, tornadoes, flash floods | 7 dead USD 100mn-300mn insured loss |
| 2.4.-3.4. | United States <br> IN, OH, NJ, IL, PA, MD, VA, <br> NY, DE, DC | Thunderstorms, hail | USD 100mn-300mn insured loss |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 15.4. | Uruguay Dolores | EF3 tornado - 251 buildings destroyed, 13912 buildings damaged (70\% of buildings of Dolores) | 5 dead <br> 230 injured <br> USD 3mn total damage |
| 19.4.-24.4. | Myanmar (Burma) <br> Mandalay, Sagaing, Magway, <br> Shan, Chin | Thunderstorms, large hail, flash floods 7500 houses destroyed | 14 dead <br> 12000 homeless |
| 20.4.-25.4. | China <br> Hubei, Henan, Shaanxi, <br> Guangxi, Guizhou, Shandong | Thunderstorms, large hail | 49 injured CNY 1.4bn (USD 202mn) total damage |
| 25.4.-28.4. | United States <br> TX, KS, MO, IN, WV, OK, IL, NC, MS | Thunderstorms, hail, tornadoes | ```6 \text { dead} 1 9 \text { injured} USD 600mn-1bn insured loss``` |
| 29.4. | Bangladesh Sunamganj | Nor'wester - 200 houses damaged | 1 dead 50 injured |
| 29.4.-3.5. | United States TX, AR, VA, IN, NC, MD, OK, GA, MO, IL, WV | Thunderstorms, large hail, tornadoes, flash floods | 6 dead <br> USD 1bn-3bn insured loss USD 2.4bn total damage |
| 3.5.-5.5. | India Ujjain, MP | Thunderstorms, large hail, torrential rains tents erected for religious festival uprooted | 8 dead 81 injured |
| 7.5.-10.5. | United States <br> NE, KY, TX, OK, CO, TN, KS | Thunderstorms, hail, tornadoes | 2 dead <br> 10 injured <br> USD 600mn-1bn insured loss |
| 11.5.-12.5. | United States MO, TX, NE, IL | Thunderstorms, hail, tornadoes | USD 600mn-1bn insured loss |
| 16.5.-19.5. | United States TX | Thunderstorms, hail | USD 100mn-300m insured loss |
| 17.5.-23.5. | Bangladesh | Cyclone Roanu, storm surge - 23940 houses destroyed, 216771 houses damaged | 28 dead <br> USD 600mn total damage |
| 21.5.-28.5. | United States TX, MT, KS, MO, CO | Thunderstorms, tornadoes, hail | 1 dead USD 600mn-1bn insured loss USD 1.1bn total damage |
| 27.5.-7.6. | Germany, France, Switzerland, Belgium, Luxembourg, Poland, Austria, Romania | River and flash floods caused by thunderstorms and heavy rains due to low-pressure systems Elvira and Friederike | 17 dead <br> 35 injured <br> EUR 2.736bn (USD 2.886bn) insured loss <br> EUR 3.8bn (USD 4.Obn) total damage |
| 29.5.-2.6. | United States TX | Thunderstorms, floods, tornadoes | 15 dead USD 100mn-300m insured loss |
| 1.6.-2.6. | Pakistan Islamabad, Rawalpindi, Khyber Pakhtunkhwa | Thunderstorms, torrential rains, flash floods - glass roof of a shopping mall collapses | 34 dead 191 injured |
| 2.6. | China <br> Qinqhai | Thunderstorms, hail | 2200 homeless <br> USD 60mn total damage |
| 3.6.-7.6. | Australia QLD, NSW, VIC, TAS | Winter storm (East Coast Low) brings wind, storm surge, coastal erosion and flood damage | 4 dead <br> AUD 422mn (USD 305mn) insured loss |
| 6.6.-7.6. | United States Denver, CO | Thunderstorms, hail | USD 100mn-300mn insured loss |
| 16.6.-18.6. | United States VA, GA, AL, SC | Thunderstorms, hail, torrential rains | USD 100mn-300mn insured loss |
| 16.6.-18.6. | United States ND, MN, SD | Thunderstorms, hail | USD 100mn-300mn insured loss |
| 23.6 . | China <br> Yancheng, Jiangsu | Thunderstorms, large hail, EF4 tornado (Jiangsu tornado) | 99 dead <br> 846 injured <br> USD 500mn total damage |
| 23.6 . | Netherlands North Brabant, Limburg | Thunderstorms, hailstorm - severe crop damage | EUR 500mn (USD 527mn) insured loss EUR 800mn (USD 844mn) total damage |
| 24.6.-25.6. | Germany <br> Westfälische Provinzial, Provinzial Rheinland, Bavaria | Thunderstorms, large hail, flash floods (depressions Lea, Marine, Neele) | 92 injured <br> EUR 240mn (USD 253mn) insured loss |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 28.6.-30.6. | Canada <br> Okotoks, Claresholm, <br> Edmonton, Calgary (AB), <br> SK, MB | Thunderstorms, large hail, flash floods, 1 tornado | CAD 86mn (USD 64mn) insured loss CAD 110mn (USD 82mn) total damage |
| 5.7.-7.7. | United States MN, TN, KY, WI | Thunderstorms, hail, flash floods in TN | USD 100mn-300mn insured loss |
| 7.7.-9.7. | United States CO, MI, NC, TN | Thunderstorms, large hail | USD 100mn-300mn insured loss |
| 8.7.-12.7. | Philippines, Taiwan, China | Typhoon Nepartak | 111 dead USD 1bn total damage |
| 13.7.-15.7. | United States CO, OK, IL, AR, MO, KS | Thunderstorms, hail, tornadoes | USD 300mn-600mn insured loss |
| 15.7.-16.7. | Canada <br> Lethbridge, Calgary, Arbour <br> Lake (AB), SK | Thunderstorms, large hail, flash floods | CAD 75 mn (USD 56mn) insured loss |
| 18.7.-20.7. | Canada <br> Alberta, Manitoba, <br> Saskatchewan | Thunderstorms with winds up to $122 \mathrm{~km} / \mathrm{h}$, tornadoes, large hail, flash floods | CAD 99mn (USD 74mn) insured loss |
| 20.7.-21.7 | United States MN | Thunderstorms, hail | USD 25mn-100mn insured loss |
| 24.7.-26.7 | South Africa Cape Town, Durban | Thunderstorms, flash floods - >2300 buildings flooded | 7 dead <br> ZAR 2bn (USD 146mn) insured loss |
| 30.7.-1.8. | United States MD, NJ, NY, PA, VA | Thunderstorms, flash floods in Maryland and New Jersey, hail | 2 dead USD 100mn-300mn insured loss |
| 30.7.-1.8. | Canada <br> Alberta, Saskatchewan, Manitoba | Thunderstorms with winds up to $113 \mathrm{~km} / \mathrm{h}$, large hail, 3 tornadoes, flash floods in the Prairie | CAD 439mn (USD 327mn) insured loss |
| 31.7.-3.8. | Philippines, China, Viet Nam | Typhoon Nida | USD 150mn total damage |
| 2.8.-5.8. | Mexico, Belize | Hurricane Earl, storm surge, floods | 67 dead USD 25 mn insured loss USD 250mn total damage |
| 6.8.-7.8. | Macedonia, Skopje | Cloudburst triggers flash floods | 22 dead <br> 77 injured USD 50mn total damage |
| 9.8. | Pakistan Bannu | Thunderstorms | 2 dead 59 injured |
| 17.8.-30.8. | Japan, China | Typhoon Lionrock | 79 dead |
| 18.8.-22.8. | China, Vietnam | Tropical storm Dianmu | 17 dead USD 270 mn total damage |
| 24.8.-25.8. | United States IN, OH | Thunderstorms, tornadoes, hail, flash floods | 20 injured <br> USD 25-100m insured loss |
| 31.8.-4.9. | United States FL, GA, NC, SC, VA, DE | Hurricane Hermine (Cat 1), storm surge | USD 100mn-300mn insured loss |
| 2.9 . | Iran <br> Golestan | Thunderstorms, flash floods - 900 buildings damaged | $\begin{aligned} & 4 \text { dead } \\ & 2000 \text { homeless } \end{aligned}$ |
| 8.9.-13.9. | China <br> Shandong, Henan, Fujian | Thunderstorms. large hail, floods 2000 houses damaged, crop damage | USD 175mn total damage |
| 14.9.-16.9. | China, Taiwan, Philippines | Typhoon Meranti | 44 dead <br> <USD 400m insured loss <br> USD 2.5bn total damage |
| 19.9.-23.9. | United States WI, MN, IA | Thunderstorms, hail, tornadoes, river floods in the Cedar River basin, Shell Rock River, flash floods | USD 100-300m insured loss |
| 23.9.-28.9. | China, Taiwan <br> China: Zhejiang, Fujian, Jiangxi | Typhoon Megi, floods, landslides | 10 dead, 17 missing <br> 625 injured <br> USD 951mn total damage |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 28.9.-8.10. | United States, Haiti, <br> Barbados, Saint Lucia, Saint Vincent and The Grenadines, Cuba, Bahamas, Dominican Republic, Colombia, Jamaica | Hurricane Matthew, storm surge, wind damage, inland river floods and flash floods in eastern North Carolina | 606 dead, 128 missing 150000 homeless USD 4bn insured loss USD 12bn total damage |
| 3.10.-6.10. | Japan, South Korea | Typhoon Chaba, storm surge | 9 dead, 4 missing USD 200mn insured loss USD 800mn total damage |
| 9.10.-11.10. | Canada <br> Sydney, Cape Breton, Burgeo <br> (Newfoundland and <br> Labrador), Nova Scotia | Remnants of Hurricane Matthew bring wind and inland flood damage from heavy rainfall and winds. Record rainfall in Sydney, Nova Scotia, with over 1000 houses suffering flood damage | CAD 108mn (USD 80mn) insured loss |
| 13.10.-15.10. | Viet Nam | Tropical storm Aere | 31 dead <br> USD 100mn total damage |
| 16.10.-19.10. | Philippines, China | Typhoon Sarika with winds up to $210 \mathrm{~km} / \mathrm{h}$ - 2421 houses destroyed, 16956 houses damaged | 2 dead <br> USD 729 mn total damage |
| 19.10.-21.10. | Philippines, China | Typhoon Haima with sustained winds of up to $225 \mathrm{~km} / \mathrm{h}$ and gusts of $310 \mathrm{~km} / \mathrm{h}$, storm surge - 14564 houses destroyed, 79371 houses damaged | 15 dead <br> 17 injured <br> USD 1.083bn total damage |
| 19.10.-22.10. | Taiwan, Japan | Typhoon Malakas | 1 dead USD 300mn total damage |
| 24.10 . | Mozambique Maputo | Thunderstorms, large hail -400 houses destroyed | 12 dead 200 injured 1500 homeless |
| 11.11. | Australia <br> Mildura, VIC, SA, NSW | Thunderstorms, large hail, heavy rains extensive damage to vehicles and crops (vineyards, almonds, stone fruit, wheat) | AUD 272 mn (USD 197mn) insured loss |
| 21.11.-26.11. | Nicaragua, Costa Rica, Panama | Hurricane Otto (Cat 2) with winds up to $175 \mathrm{~km} / \mathrm{h}$, storm surge , inland flash floods, landslides | 18 dead <br> 2054 homeless <br> USD 1 mn insured loss <br> USD 50mn total damage |
| 28.11.-1.12. | United States TN, AL, GA, SC, MS, LA, NC | Thunderstorms, tornadoes | 8 dead <br> 33 injured <br> USD 100mn-300mn insured loss |
| 12.12.-14.12. | India <br> Tamil Nadu, Andaman, <br> Nicobar Islands | Cyclone Vardah, flash floods | 12 dead <br> USD 52mn insured loss <br> USD 1bn total damage |
| 25.12.-28.12. | Philippines Catanduanes Island, Calabarzon, Mimaropa, Region V | Typhoon Nock-Ten (Nina) with sustained winds of $185 \mathrm{~km} / \mathrm{h}$ and gusts of $255 \mathrm{~km} / \mathrm{h}$ - 85229 houses destroyed, 228538 houses damaged | 13 dead, 21 missing <br> PHP 12.115bn (USD 244mn) total damage |

## Earthquakes

| Date | Country | Event | Number of victims and amount of damage <br> (where data available), in local currency and/or USD |
| :--- | :--- | :--- | :--- |
| 4.1. | India, Bangladesh, Bhutan | Earthquake Mw 6.7 | 21 dead |
|  | Imphal, Manipur |  | 350 injured |
|  |  |  | USD 60mn total damage |



Drought, bush fires, heat waves

| Date | Country | Event | Number of victims and amount of damage <br> (where data available), in local currency and/or USD |
| :--- | :--- | :--- | :--- |
| 1.1.-19.6. | Cyprus <br> Nicosia, Larnaca, Famagusta | Drought, wildfires | EUR 181mn (USD 191mn) total damage |
| 1.1.-30.6. | India | Drought | USD 400mn insured loss |
|  |  |  | USD 3bn total damage |



## Cold frost

| Date | Country | Event | Number of victims and amount of damage <br> (where data available), in local currency and/or USD |
| :--- | :--- | :--- | :--- |
| 1.1.-3.1. | Poland | Cold spell | 21 dead |
| 1.1.-12.1. | Ukraine | Cold spell | 37 dead |
| 20.1.-26.1. | Taiwan, Thailand | Cold wave | 100 dead |
| 24.1.-27.1. | China, North Korea, Taiwan | Frost damage from winter weather, heavy <br> snowfall | 70 injured |
| 18.9.-21.9. | Australia <br> Western Australia, WA | Frost in freezing temperatures damages crops | AUD 140mn (USD 101mn) total damage |

Hail

| Date | Country | Event | Number of victims and amount of damage <br> (where data available), in local currency and/or USD |
| :--- | :--- | :--- | :--- |
| 23.3. | United States <br> Dallas, Fort Worth, Plano (TX) | North Texas hailstorm, thunderstorms | USD 1bn-3bn insured loss <br> USD 2.1bn total damage |
| 8.4. | Bangladesh <br> Baralekha, Moulvibazar | Hailstorm - 2800 houses damaged | $>2000$ homeless |
| 10.4.-15.4. | United States <br> San Antonio, TX, FL | Severe hailstorm in San Antonio, TX | USD 1bn-3bn insured loss |
| 22.7. | Canada <br> Moose Jaw, SK | Hailstorm | USD 3.5bn total damage |

Other natural catastrophes

| Date | Country | Event | Number of victims and amount of damage (where <br> data available), in original currency and/or USD |
| :--- | :--- | :--- | :--- |
| 23.5. | Yemen | Heavy rains trigger landslide | 24 dead |
|  | Lasbah, AI-Shamayaten <br> District, Taiz Governorate |  |  |

Table 9 uses loss ranges for US natural catastrophes as defined by Property Claims Services. For Canada loss estimates, the data is from CatlQ.
Source: Cat Perils and Swiss Re Institute.

Table 10
Chronological list of all man-made disasters in 2016

Aviation disasters

| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and/or USD |
| :---: | :---: | :---: | :---: |
| 24.2 . | Nepal <br> Tirkhe Dungha, Myagdi | Tara Air Viking Air DHC-6 Twin Otter 400 craft crashes in poor visibility | 23 dead |
| 15.3. | Peru <br> Pastaza | Aviación del Ejército Ecuatoriana IAI Arava 201 crashes en route | 22 dead |
| 19.3. | Russia <br> Rostov-On-Don Airport | Flydubai Boeing 737-8KN (WL) crashes on landing | 62 dead |
| 26.3 . | Space | JAXA ASTRO-H (Hitomi) X-ray astronomy satellite disintegrates in orbit after spinning out of control | USD 286mn total damage |
| 19.5. | Egypt 200 km north of the Egyptian coast line | EgyptAir Airbus A320-232 crashes in unknown circumstances | 66 dead |
| 3.8. | United Arab Emirates Dubai | Emirates Boeing 777-31H catches fire shortly after crash landing | 1 dead |
| 28.10. | United States Chicago | American Airlines B767-300ER catches fire shortly ahead of take-off |  |
| 28.11. | Colombia Medellín | LaMia Avro RJ. 85 crashes en route to Medellín after running out of fuel | 71 dead |
| 1.12. | Space | Roscosmos Progress-MS-4 cargo spacecraft lost due to launch failure |  |
| 7.12 . | Pakistan Havelian | PIA ATR 42-500 crashes en route to Islamabad | 47 dead |
| 25.12. | Russia <br> Adler | Russian Air Force Tupolev 154B-2 crashes shortly after take-off | 92 dead |

Collapse of buildings/bridges

| Date | Country | Event | Number of victims |
| :--- | :--- | :--- | :--- |
| 8.3. | Nigeria <br> Lagos | Five-storey building collapses | 35 dead |
| 31.3. | India <br> Kilkata | Bridge collapses | 23 dead |
| 3.8. | India Raigad District, Maharashtra | Buses and vehicles plunge into Savitri River after <br> bridge collapses | 24 dead, 18 missing |
| 10.12. | Nigeria | Church roof collapses during a service | 160 dead |
|  | Uyo, Akawa lbom |  | 200 injured |

## Major fires, explosions

| Date | Country | Event | Number of victims and amount of damage <br> (where data available), in local currency and USD |
| :--- | :--- | :--- | :--- |
| 1.1. | Philippines <br> Manila | Fire at a shanty town triggered by firecrackers <br> during New Year's Eve celebrations | 3000 homeless |
| 5.1. | Pakistan <br> Lahore | Gas leak from an ice factory | 150 injured |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and USD |
| :---: | :---: | :---: | :---: |
| 8.1. | Japan | Explosion at a steel plant |  |
|  | Chita |  |  |
| 15.1. | Canada | Fire and explosions at an oil sand facility | 1 dead |
|  | Fort McMurray, Alberta |  | 1 injured |
| 21.1. | Hungary | Fire at a petrochemicals plant |  |
|  | Zala |  |  |
| 1.2 . | Russia | Fire at a coal power plant |  |
|  | Sharypovo, Krasnoyarsk |  |  |
| 8.2 . | Germany | Fire at a meat factory | 2 injured |
|  | Paderborn |  |  |
| 15.2. | Colombia | Fire at a hydroelectric plant |  |
|  | Antioquia |  |  |
| 16.2. | Russia | Gas explosion in an apartment block | 39 dead |
|  | Yaroslavl |  |  |
| 5.3. | United States | Fire and explosion at an oil refinery |  |
|  | Texas |  |  |
| 28.3 . | Germany | Fire at a meat processing plant |  |
|  | Lohne |  |  |
| 31.3. | France | Steam generator falls, damages nuclear power |  |
|  | Paluel | plant |  |
| 2.4. | Qatar | Fire at a shopping mall |  |
|  | Doha |  |  |
| 10.4. | India | Explosion and fire at a temple in a fireworks | 112 dead |
|  | Paravur, Kollam | display | 350 injured |
| 21.4 | Mexico | Explosion at a petrochemicals plant | 32 dead |
|  | Coatzacoalcos, Veracruz |  | 136 injured |
| 21.4. | United States | Fire at a furniture warehouse |  |
|  | Chicago |  |  |
| 29.4 | Kenya | Residential six-storey building collapses in bad | 49 dead, 21 missing |
|  | Nairobi | weather; building had been declared unsafe and was illegally occupied | 135 injured |
| 9.5. | South Korea | Fire at a power station |  |
|  | Chungcheongnam |  |  |
| 29.5. | Pakistan | Silo collapses at a cement company |  |
|  | Tehsil Fateh Jang, Punjab |  |  |
| 15.6. | Canada | Damage at a gas pipeline during flooding |  |
|  | British Columbia |  |  |
| 18.6 . | Philippines | Fire at a residential area - 560 houses | 2000 homeless |
|  | Isabela City | destroyed | PHP 105m (USD 2m) total damage |
| 21.6. | Philippines | Fire at a residential area - 600 houses | 5 injured |
|  | Zamboanga City | destroyed | 2000 homeless |
|  |  |  | PHP 5m total damage |
| 27.6 | United States | Fire and explosion at a gas plant |  |
|  | Jackson County, Mississippi |  |  |
| 7.7. | Iran | Fire at a petrochemicals plant |  |
|  | Bandar Imam Khomeini |  |  |
| 14.7. | Russia | Fire and explosion at a gas plant |  |
|  | Khanty-Mansi Autonomous |  |  |
| 16.7. | Russia | Explosion at an oil refinery | 8 dead |
|  | Ufa |  |  |
| 16.7. | Spain | Fire at a food processing plant |  |
|  | Seville |  |  |
| 20.7.-22.7. | Canada | Pipeline bursts and spills 225000 litres of |  |
|  | Maidstone, Saskatchewan | heavy oil and diluent into the North |  |
|  |  | Saskatchewan River |  |
| 23.7. | Madagascar | Fire at a house party | 38 dead |
|  | Ambalavato, Ikalamavony |  |  |


| Date | Country | Event | Number of victims and amount of damage (where data available), in local currency and USD |
| :---: | :---: | :---: | :---: |
| 2.8. | India | Accident at a steel plant |  |
|  | Bellary, Karnataka |  |  |
| 11.8. | China | Explosion at a power plant | 21 dead |
|  | Dangyang, Hubei |  | 5 injured |
| 11.8. | United States | Fire and explosion at a power plant |  |
|  | St. Clair County, Michigan |  |  |
| 3.9. | Ethiopia | Fire at a prison | 23 dead |
|  | Addis Ababa |  |  |
| 10.9. | Bangladesh | Explosion and fire at a packaging factory | 31 dead, 8 missing |
|  | Gazipur |  |  |
| 30.9 . | Germany | Fire at a hospital | 2 dead |
|  | Bochum |  | 16 injured |
| 10.10. | China | Four adjacent residential buildings collapse | 22 dead |
|  | Wenzhou, Zhejiang Province |  | 6 injured |
| 17.10. | Germany | Explosion at a chemical plant | 1 dead, 6 missing |
|  | Ludwigshafen |  | 7 injured |
| 17.10. | India | Fire at a hospital | 21 dead |
|  | Bhubaneswar |  | 100 injured |
| 24.10. | China | Explosion at a prefabricated house in a residential complex - 5 buildings destroyed, 58 buildings damaged | 14 dead |
|  | Xinmin, Shaanxi |  | 147 injured |
| 13.11. | Philippines | Fire at residential establishments -500 houses damaged | 2 dead |
|  | Mandaluyong City |  | 2000 homeless |
| 24.11. | China | A construction platform for a power plant collapses | 74 dead |
|  | Fengcheng, Jiangxi |  |  |
| 26.11. | Bahrain | Fire and explosion at a refinery |  |
|  | Sitra |  |  |
| 1.12. | Italy | Fire and explosion at an oil refinery |  |
|  | Pavia |  |  |
| 2.12 | United States | Fire at a two-story warehouse during a party | 36 dead |
|  | Oakland |  | 2 injured |
| 5.12 . | Pakistan | Fire at a hotel | 12 dead |
|  | Karachi |  | 75 injured |
| 20.12. | Mexico | Explosion at a fireworks market | 33 dead |
|  | Tultepec, Mexico City |  |  |

Maritime disasters

| Date | Country | Event | Number of victims (where data available) |
| :--- | :--- | :--- | :--- |
| 1.1. | India <br> Mumbai | Damage to oil rig during piling operations |  |
| 5.1. | Mediterranean Sea, Turkey <br> Ayvalik | Boat carrying migrants capsizes | 9 dead, 13 missing |
| 5.1. | Turkey <br> Marmaris | Fire on two recreational boats |  |
| 6.1. | China <br> South China Sea | Damage to oil rig during jacking operations |  |
| 8.1. | Indian Ocean, Somalia <br> Sanag | Boat carrying migrants capsizes | 106 dead |
| 21.1. | Turkey, Mediterranean Sea <br> Foca, Izmir | Boat carrying migrants capsizes | 12 dead, 20 missing |
| 22.1. | Greece <br> Kalolimnos | Boat carrying migrants capsizes | 44 dead |


| Date | Country | Event | Number of victims (where data available) |
| :---: | :---: | :---: | :---: |
| 26.1. | Denmark North Sea | Accident at a drilling platform |  |
| 28.1. | Turkey <br> Samos | Boat carrying migrants capsizes | 26 dead |
| 30.1. | Turkey, Mediterranean Sea Ayvacik | Boat carrying migrants capsizes | 39 dead |
| 31.1. | United States Louisiana | Bulk carrier collides with barge on the Mississippi River, a towing vessel and two other facility structures |  |
| 1.2. | Iraq <br> Persian Gulf | Damage to oil rig during jacking operations |  |
| 7.2. | Gulf of Mexico Bay of Campeche | Fire and explosion at a drilling platform |  |
| 8.2 | Canada off Nova Scotia | Damage at a drilling platform during a storm |  |
| 9.2. | Mediterranean Sea Aegean coast of Turkey | Boat carrying migrants capsizes | 23 dead |
| 28.2 . | Ghana Jubilee Field | Turret failure at a floating production, storage and offloading (FPSO) vessel |  |
| 6.3. | Turkey, Mediterranean Sea Didim | Boat carrying migrants capsizes | 25 dead |
| 18.3. | Taiwan Keelung | Container runs aground |  |
| 30.3. | Libyan Arab Jamahiriya, Mediterranean Sea Zawiya | Boat carrying migrants capsizes | 54 dead |
| 17.4. | Myanmar (Burma), Indian Ocean <br> Sittwe | Boat carrying migrants capsizes | 21 dead |
| 1.5. | Australia South China Sea | Damage to oil rig |  |
| 8.5. | Nigeria <br> Niger Delta | Damage at a drilling platform |  |
| 27.5 | Libyan Arab Jamahiriya, Mediterranean Sea | Boat carrying migrants capsizes | 45 dead |
| 3.6. | Greece, Mediterranean Sea Off Crete | Boat carrying migrants capsizes | 358 dead |
| 1.9. | Space <br> Cape Canaveral Air Force Station | Explosion destroys SpaceX Falcon 9 rocket and Amos-6 satellite during static-fire test |  |
| 1.9. | Germany Hamburg | Explosion and fire on a containership |  |
| 18.9. | Thailand Ayutthaya | Overcrowded double-decker boat capsizes on Chao Phraya River after hitting a bridge | 28 dead 33 injured |
| 21.9. | Egypt <br> Rosetta | Overcrowded boat carrying migrants capsizes | 178 dead |
| 1.10. | Yemen | Cargo vessel sinks |  |
| 15.10. | Myanmar (Burma) | Ferry capsizes on the Chindwin River | 73 dead |
| 1.11. | Pakistan Gadani | Explosion and fire on an oil tanker at a shipbreaking yard | 26 dead 59 injured |
| 2.11. | Philippine Sea Batam, Indonesia | Overcrowded boat carrying migrants capsizes | 18 dead, 44 missing |
| 3.11. | Libyan Arab Jamahiriya | Boat carrying migrants capsizes | 240 dead |
| 4.11. | Indonesia | Boat carrying migrants capsizes | 54 dead |
| 17.11. | Libyan Arab Jamahiriya | Boat carrying migrants capsizes | 100 missing |
| 7.12 . | Indian Ocean off Socotra | Cargo vessel sinks | 40 missing |

Mining accidents

| Date | Country | Event | Number of victims (where data available) |
| :--- | :--- | :--- | :--- |
| 22.1. | South Africa <br> Rustenburg | Fire at a mining company | 4 dead |
| $25.2 .-28.2$. | Russia <br> Vorkuta, Komi Republic | Three gas explosions at Severnaya coal mine | 36 dead |
| 17.7. | Canada <br> Saskatoon | Equipment collapse at a potash mine |  |
| 27.9. | China <br> Shizuishan City | Explosion at an illegal coal mine | 18 dead, 2 missing |
| 31.10. | China <br> Laisu, Chongqing | Gas explosion at a coal mine | 31 dead |
| 29.11. | China <br> Qitaihe, Heilongjiang | Explosion at a coal mine | 21 dead |
| 3.12. | China <br> Chifeng, Inner Mongolia | Explosion at a coal mine | 17 dead, 15 missing |
| 29.12. | India <br> Godda, District, Jharkhand | Landslide at a coal mine | 16 dead, 6 missing |



## Rail disasters (incl. cableways)

| Date | Country | Event | Number of victims |
| :---: | :---: | :---: | :---: |
| 19.1. | Italy | Two metro trains collide due to signal failure | 70 injured |
|  | Cagliari |  |  |
| 9.2. | Germany | Two commuter trains collide head-on | 12 dead |
|  | Bad Aibling, Rosenheim |  | 89 injured |
| 8.4. | Costa Rica | Two passenger trains collide head-on | 245 injured |
|  | San Jose |  |  |
| 23.6. | South Africa | Two trains collide head-on | 121 injured |
|  | Lamontville, Durban |  |  |
| 12.7. | Italy | Two passenger trains collide head-on | 23 dead |
|  | Corato, Puglia |  | 52 injured |
| 15.9. | Pakistan | Passenger train crashes into a freight engine | 6 dead |
|  | Multan, Punjab |  | 150 injured |
| 29.9. | United States | Commuter train fails to stop, derails and hits a | 1 dead |
|  | Hoboken, NJ | wall at NJT Hoboken Terminal | 110 injured |
| 21.10. | Cameroon | Passenger train crashes | 75 dead |
|  | Eséka, Centre Region |  | 550 injured |
| 20.11. | India | 14 coaches of a passenger train derail | 150 dead |
|  | Pukhrayan, UP |  | 260 injured |
| 25.11. | Iran | Two passenger trains collide; four carriages | 49 dead |
|  | Semnan | derail and two catch fire | 103 injured |
| 28.12 | India | Passenger train derails | 2 dead |
|  | Kanpur, UP |  | 68 injured |



Source: Cat Perils and Swiss Re Institute.

Table 11
The 40 most costly insurance losses (1970-2016)

| Insured loss ${ }^{1}$ (in USD mn, indexed to 2016) | Victims ${ }^{2}$ | Start date | Event | Country/region |
| :---: | :---: | :---: | :---: | :---: |
| 80699 | 1836 | 25.8.2005 | Hurricane Katrina, storm surge, damage to oil rigs | US, Gulf of Mexico |
| 37344 | 18451 | 11.3.2011 | Earthquake (Mw 9.0) triggers tsunami | Japan |
| 30141 | 237 | 24.10.2012 | Hurricane Sandy, storm surge | US, Caribbean, Canada |
| 27368 | 65 | 23.8.1992 | Hurricane Andrew, floods | US, Bahamas |
| 25456 | 2982 | 11.9.2001 | Terror attack on WTC, Pentagon, other buildings | US |
| 24773 | 61 | 17.1.1994 | Northridge earthquake (Mw 6.7) | US |
| 22577 | 193 | 6.9.2008 | Hurricane lke, floods, damage to oil rigs | US, Caribbean, Gulf of Mexico |
| 17072 | 185 | 22.2.2011 | Earthquake (Mw 6.1), aftershocks | New Zealand |
| 16417 | 119 | 2.9.2004 | Hurricane Ivan, damage to oil rigs | US, Caribbean, Venezuela |
| 16005 | 815 | 27.7.2011 | Heavy monsoon rains, extreme flooding | Thailand |
| 15447 | 53 | 19.10.2005 | Hurricane Wilma, torrential rains, flooding | US, Mexico, Caribbean |
| 13199 | 34 | 20.9.2005 | Hurricane Rita, floods, damage to oil rigs | US, Gulf of Mexico |
| 11498 | 123 | 15.7.2012 | Drought in the Corn Belt | US |
| 10033 | 36 | 11.8.2004 | Hurricane Charley | US, Caribbean, Gulf of Mexico |
| 9950 | 51 | 27.9.1991 | Typhoon Mireille/No. 19 | Japan |
| 8852 | 71 | 15.9.1989 | Hurricane Hugo | US, Caribbean |
| 8804 | 562 | 27.2.2010 | Earthquake (Mw 8.8) triggers tsunami | Chile |
| 8577 | 95 | 25.1.1990 | Winter storm Daria | France, UK, Belgium, NL et. al. |
| 8356 | 110 | 25.12.1999 | Winter storm Lothar | Switzerland, UK, France, et. al. |
| 7789 | 321 | 22.4.2011 | Major tornado outbreak; 349 tornadoes, hail | US |
| 7522 | 177 | 20.5.2011 | Tornado outbreak, winds up to $405 \mathrm{~km} / \mathrm{h}$, hail | US |
| 7057 | 54 | 18.1.2007 | Winter storm Kyrill, floods | Germany, UK, NL, Belgium et. al. |
| 6546 | 22 | 15.10.1987 | Storm and floods in Europe | France, UK, NL, et. al. |
| 6388 | 50 | 26.8.2004 | Hurricane Frances | US, Bahamas |
| 6062 | 51 | 22.8.2011 | Hurricane Irene, floods | US, Canada, Caribbean |
| 5820 | 26 | 22.9.1999 | Typhoon Bart/No 18 | Japan |
| 5695 | 600 | 20.9.1998 | Hurricane Georges, floods | US, Caribbean |
| 5649 | 64 | 25.2.1990 | Winter storm Vivian | Switzerland, Germany |
| 5502 | - | 4.9.2010 | Earthquake (Mw 7.0), over 300 aftershocks | New Zealand |
| 4895 | 3034 | 13.9.2004 | Hurricane Jeanne; floods, Iandslides | US, Caribbean |
| 4890 | 43 | 5.6.2001 | Tropical storm Allison; heavy rain, floods | US |
| 5000 | 137 | 14.4.2016 | Earthquakes | Japan |
| 4555 | 45 | 6.9.2004 | Typhoon Songda/No. 18 | Japan, South Korea |
| 4259 | 25 | 27.5.2013 | Floods | Germany, Czech Republic, et. al. |
| 4180 | 51 | 2.5.2003 | Thunderstorms, tornadoes, hail, flash floods | US |
| 4066 | 78 | 10.9.1999 | Hurricane Floyd, heavy rain, floods | US, Bahamas |
| 4000 | 734 | 6.10 .2016 | Hurricane Matthew | US, Caribbean |
| 3954 | - | 27.7.2013 | Hailstorms | Germany, France |
| 3946 | 77 | 1.10.1995 | Hurricane Opal, floods | US, Mexico, Guatemala |
| 3893 | 6434 | 17.1.1995 | Great Hanshin earthquake in Kobe (Mw 6.9) | Japan |

Note: $\mathrm{Mw}=$ moment magnitude scale.
Source: Cat Perils and Swiss Re Institute.

[^10]Table 12
The 40 worst catastrophes in terms of victims (1970-2016)

| Victims ${ }^{19}$ | $\begin{array}{r} \text { Insured loss }{ }^{20} \\ \text { (USD mn, } \\ \text { indexed to 2016) } \\ \hline \end{array}$ | Start date | Event | Country/region |
| :---: | :---: | :---: | :---: | :---: |
| 300000 | - | 11.11.1970 | Storm and flood catastrophe | Bangladesh |
| 255000 | - | 28.07.1976 | Earthquake (Mw 7.6) | China |
| 222570 | 110 | 12.01.2010 | Earthquake (Mw 7.0), aftershocks | Haiti |
| 220000 | 2541 | 26.12.2004 | Earthquake (Mw 9) triggers tsunami in Indian Ocean | Indonesia, Thailand, et. al. |
| 138373 | - | 02.05.2008 | Tropical cyclone Nargis, Irrawaddy Delta flooded | Myanmar, Bay of Bengal |
| 138000 | 4 | 29.04.1991 | Tropical cyclone Gorky | Bangladesh |
| 87449 | 409 | 12.05.2008 | Earthquake (Mw 7.9) in Sichuan | China |
| 74310 | - | 08.10.2005 | Earthquake (Mw 7.6); aftershocks, landslides | Pakistan, India, Afghanistan |
| 66000 | - | 31.05.1970 | Earthquake (Mw 7.9) triggers rock slide and floods | Peru |
| 55630 | - | 15.06.2010 | Heat wave, temperatures of up to $40^{\circ} \mathrm{C}$ | Russia, Czech Republic |
| 40000 | 211 | 20.06.1990 | Earthquake (Mw 7.4), landslides | Iran |
| 35000 | 1645 | 01.06.2003 | Heat wave and drought in Europe | France, Italy, Germany, et. al. |
| 26271 | - | 26.12.2003 | Earthquake (Mw 6.5) destroys 85\% of Bam | Iran |
| 25000 | - | 07.12.1988 | Earthquake (Mw 6.8) | Armenia |
| 25000 | - | 16.09.1978 | Earthquake (Mw 7.7) in Tabas | Iran |
| 23086 | - | 13.11.1985 | Volcanic eruption on Nevado del Ruiz triggers lahars | Colombia |
| 22300 | 316 | 04.02.1976 | Earthquake (Mw 7.5) | Guatemala |
| 19737 | 136 | 26.01.2001 | Earthquake (Mw 7.6) in Gujarat | India, Pakistan |
| 19118 | 1441 | 17.08.1999 | Earthquake (Mw 7.6) in Izmit | Turkey |
| 18451 | 37344 | 11.03.2011 | Earthquake (Mw 9.0) triggers tsunami | Japan |
| 15000 | 144 | 29.10.1999 | Tropical cyclone 05B in Orissa | India |
| 14204 | - | 20.11.1977 | Tropical cyclone in Andhra Pradesh | India |
| 11683 | 589 | 22.10.1998 | Hurricane Mitch in Central America | Honduras, Nicaragua, et. al. |
| 11069 | - | 25.05.1985 | Tropical cyclone in Bay of Bengal | Bangladesh |
| 10800 | - | 26.10.1971 | Odisha cyclone, flooding in Bay of Bengal | India |
| 10000 | 317 | 12.12.1999 | Floods, mudflows and landslides | Venezuela |
| 9500 | 1056 | 19.09.1985 | Earthquake (Mw 8.0) | Mexico |
| 9475 | 0.4 | 30.09.1993 | Earthquake (Mw 6.4) | India |
| 8960 | 162 | 25.04.2015 | Earthquake Mw 7.8 | Nepal, India, China, Bangladesh |
| 8135 | 525 | 08.11.2013 | Typhoon Haiyan, storm surge | Philippines, Vietnam, China, Palau |
| 7079 | - | 17.08.1976 | Earthquake (Mw 7.1) triggers tsunami in Moro Gulf | Philippines |
| 6434 | 3893 | 17.01.1995 | Great Hanshin earthquake (Mw 6.9) in Kobe | Japan |
| 6304 | - | 05.11.1991 | Typhoon Thelma (Uring) | Philippines |
| 6000 | - | 02.12.1984 | Accident in chemical plant - methyl isocyanates released | India |
| 6000 | - | 01.06.1976 | Heat wave, drought | France |
| 5749 | 48 | 27.05.2006 | Earthquake (Mw 6.4); Bantul destroyed | Indonesia |
| 5748 | 515 | 14.06.2013 | Floods caused by heavy monsoon rains | India |
| 5422 | - | 25.06.1976 | Earthquake (Mw 7.1) | Indonesia |
| 5374 | - | 10.04.1972 | Earthquake (Mw 6.6) in Fars | Iran |
| 5300 | - | 28.12.1974 | Earthquake (Mw 6.0) | Pakistan |

Note: Mw = moment magnitude scale
Source: Cat Perils and Swiss Re Institute.

[^11]
## Terms and selection criteria

A natural catastrophe is caused by natural forces.

A man-made or technical disaster is triggered by human activities.

Losses due to property damage and business interruption that are directly attributable to major events are included in this study.

The amount of the economic losses is a general indication only.

The term "losses" refer to insured losses, but do not include liability.

NFIP flood damage in the US is included.

## Natural catastrophes

The term "natural catastrophe" refers to an event caused by natural forces. Such an event generally results in a large number of individual losses involving many insurance policies. The scale of the losses resulting from a catastrophe depends not only on the severity of the natural forces concerned, but also on man-made factors, such as building design or the efficiency of disaster control in the afflicted region. In this sigma study, natural catastrophes are subdivided into the following categories: floods, storms, earthquakes, droughts/forest fires/heat waves, cold waves/frost, hail, tsunamis, and other natural catastrophes.

## Man-made disasters

This study categorises major events associated with human activities as "man-made" or "technical" disasters. Generally, a large object in a very limited space is affected, which is covered by a small number of insurance policies. War, civil war, and war-like events are excluded. sigma subdivides man-made disasters into the following categories: major fires and explosions, aviation and space disasters, shipping disasters, rail disasters, mining accidents, collapse of buildings/bridges, and miscellaneous (including terrorism). In Tables 9 and 10 (pages 23-39), all major natural catastrophes and man-made disasters and the associated losses are listed chronologically.

## Economic losses

For the purposes of the present sigma study, economic losses are all the financial losses directly attributable to a major event, ie damage to buildings, infrastructure, vehicles etc. The term also includes losses due to business interruption as a direct consequence of the property damage. Insured losses are gross of any reinsurance, be it provided by commercial or government schemes. A figure identified as "total damage" or "economic loss" includes all damage, insured and uninsured. Total loss figures do not include indirect financial losses - ie loss of earnings by suppliers due to disabled businesses, estimated shortfalls in GDP and non-economic losses, such as loss of reputation or impaired quality of life.

Generally, total (or economic) losses are estimated and communicated in very different ways. As a result, they are not directly comparable and should be seen only as an indication of the general order of magnitude.

## Insured losses

"Losses" refer to all insured losses except liability. Leaving aside liability losses, on one hand, allows a relatively swift assessment of the insurance year; on the other hand, however, it tends to understate the cost of man-made disasters. Life insurance losses are also not included.

NFIP flood damage in the US
The sigma catastrophe database also includes flood damage covered by the National Flood Insurance Program (NFIP) in the US, provided that it fulfils the sigma selection criteria.

Thresholds for insured losses and casualties in 2016

Losses are determined using year-end exchange rates and are then adjusted for inflation

## Selection criteria

sigma has been publishing tables listing major losses since 1970. Thresholds with respect to casualties - the number of dead, missing, severely injured, and homeless - also make it possible to tabulate events in regions where the insurance penetration is below average.

For the 2016 reporting year, the lower loss thresholds were set as follows:

Insured losses (claims):

| Maritime disasters | USD 19.9 million |
| :--- | ---: |
| Aviation | USD 39.8 million |
| Other losses | USD 49.5 million |
|  |  |
| or Total losses: | USD 99.0 million |
|  |  |
| or Casualties: | 20 |
| Dead or missing | 50 |
| Injured | 2000 |
| Homeless |  |

Source: Cat Perils and Swiss Re Institute.

## Adjustment for inflation, changes to published data, information

sigma converts all losses for the occurrence year not given in USD into USD using the end-of-year exchange rate. To adjust for inflation, these USD values are extrapolated using the US consumer price index to give current (2016) values.

This can be illustrated by examining the insured property losses arising from the floods which occurred in the UK between 29 October abd 10 November 2000:

> Insured loss at 2000 prices: USD 1045.7 million Insured loss at 2016 prices: USD 1457.5 million

Alternatively, were one to adjust the losses in the original currency (GBP) for inflation and then convert them to USD using the current exchange rate, one would end up with an insured loss at 2016 prices of USD 1192.5 million, 18\% less than with the standard sigma method. The reason for the difference is that the value of the GBP declined by almost $18 \%$ against the USD in the period 2000-2016. The difference in inflation between the US (39.4\%) and the UK (38.5\%) over the same period was slightly less than $1 \%$.

| Floods UK | Exchange rate |  | US inflation |  |
| :--- | ---: | ---: | ---: | ---: |
| 29 October-10 November 2000 | GBPmn | USD/GBP | USDmn | USDmn |
| Original loss | 700.0 | 1.494 | 1045.7 | 1045.7 |
|  |  |  |  |  |
| Level of consumer price index 2000 | 72.7 |  |  | 100.0 |
| Level of consumer price index 2016 | 100.7 |  |  | 139.4 |
| Inflation factor | 1.385 |  |  | 1.394 |
|  |  |  |  |  |
| Adjusted for inflation to 2016 | 969.3 | 1.230 | 1192.5 | 1457.5 |
| Comparison |  |  | $82 \%$ | $100 \%$ |

[^12]
## Terms and selection criteria

Changes to loss amounts of previously published events are updated in the sigma database.

Only public information used for man-made disasters

Newspapers, direct insurance and reinsurance periodicals, specialist publications and other reports are used to compile this study.

If changes to the loss amounts of previously published events become known, sigma takes these into account in its database. However, these changes only become evident when an event appears in the table of the 40 most costly insured losses or the 40 disasters with the most fatalities since 1970 (See Tables 11 and 12 on pages 40-41).

In the chronological lists of all man-made disasters, the insured losses are not shown for data protection reasons. However, the total of these insured losses is included in the list of major losses in 2016 according to loss category. sigma does not provide further information on individual insured losses or about updates made to published data.

## Sources

Information is collected from newspapers, direct insurance and reinsurance periodicals, specialist publications (in printed or electronic form) and reports from insurers and reinsurers. ${ }^{24}$ In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information (see the copyright information on backpage).

Exchange rate used, ${ }^{25}$ national currency per USD

| Country | Currency | Exchange rate, end 2016 |
| :--- | :--- | ---: |
| United Arab Emirates | AED | 3.6724 |
| Australia | AUD | 1.3808 |
| Canada | CAD | 1.3408 |
| Europe | CHF | 1.0162 |
| China | CNY | 6.9444 |
| Costa Rica | CRC | 555.5556 |
| Egypt | EGP | 18.1488 |
| Euro area | EUR | 0.9481 |
| Fiji | FJD | 2.1142 |
| UK | GBP | 0.8089 |
| India | INR | 68.0272 |
| Japan | JPY | 116.2791 |
| South Korea | KRW | 1250 |
| Sri Lanka | LKR | 149.2537 |
| New Zealand | NZD | 1.4339 |
| Oman | OMR | 0.3850 |
| Philippines | PHP | 49.5050 |
| Qatar | QAR | 3.6417 |
| Russia | RUB | 60.9756 |
| Tonga | TOP | 2.3095 |
| Taiwan | TWD | 32.3625 |
| US | USD | 1.0000 |
| South Africa | ZAR | 13.6799 |

Source: Swiss Re Institute.

[^13]
## Recent sigma publications

| 2017 | No 1 <br> No 2 | Cyber: getting to grips with a complex risk Natural catastrophes and man-made disasters in 2016: a year of widespread damages |
| :---: | :---: | :---: |
| 2016 | No 1 | Natural catastrophes and man-made disasters in 2015: Asia suffers substantial losses |
|  | No 2 | Insuring the frontier markets |
|  | No 3 | World insurance 2015: steady growth amid regional disparities |
|  | No 4 | Mutual insurance in the 21st century: back to the future? |
|  | No 5 | Strategic reinsurance and insurance: the increasing trend of customised solutions |
| 2015 | No 1 | Keeping healthy in emerging markets: insurance can help |
|  | No 2 | Natural catastrophes and man-made disasters in 2014: convective and winter storms generate most losses |
|  | No 3 | M\&A in insurance: start of a new wave? |
|  | No 4 | World insurance in 2014: back to life |
|  | No 5 | Underinsurance of property risks: closing the gap |
|  | No 6 | Life insurance in the digital age: fundamental transformation ahead |
| 2014 | No 1 | Natural catastrophes and man-made disasters in 2013: large losses from floods and hail; Haiyan hits the Philippines |
|  | No 2 | Digital distribution in insurance: a quiet revolution |
|  | No 3 | World insurance in 2013: steering towards recovery |
|  | No 4 | Liability claims trends: emerging risks and rebounding economic drivers |
|  | No 5 | How will we care? Finding sustainable long-term care solutions for an ageing world |
| 2013 | No 1 | Partnering for food security in emerging markets |
|  | No 2 | Natural catastrophes and man-made disasters in 2012: |
|  |  | A year of extreme weather events in the US |
|  | No 3 | World insurance 2012: Progressing on the long and winding road to recovery |
|  | No 4 | Navigating recent developments in marine and airline insurance |
|  | No 5 | Urbanisation in emerging markets: boon and bane for insurers |
|  | No 6 | Life insurance: focusing on the consumer |
| 2012 | No 1 | Understanding profitability in life insurance |
|  | No 2 | Natural catastrophes and man-made disasters in 2011: |
|  | No 3 | World insurance in 2011: non-life ready for take-off |
|  | No 4 | Facing the interest rate challenge |
|  | No 5 | Insuring ever-evolving commercial risks |
|  | No 6 | Insurance accounting reform: a glass half empty or half full? |
| 2011 | No 1 | Natural catastrophes and man-made disasters in 2010: a year of devastating and costly events |
|  | No 2 | World insurance in 2010 |
|  | No 3 | State involvement in insurance markets |
|  | No 4 | Product innovation in non-life insurance markets: where little "i" meets big "l" |
|  | No 5 | Insurance in emerging markets: growth drivers and profitability |
| 2010 | No 1 | Natural catastrophes and man-made disasters in 2009: catastrophes claim fewer victims, insured losses fall |
|  | No 2 | World insurance in 2009: premiums dipped, but industry capital improved |
|  | No 3 | Regulatory issues in insurance |
|  | No 4 | The impact of inflation on insurers |
|  | No 5 | Insurance investment in a challenging global environment |
|  | No 6 | Microinsurance - risk protection for 4 billion people |
| 2009 | No 1 | Scenario analysis in insurance |
|  | No 2 | Natural catastrophes and man-made disasters in 2008: |
|  |  | North America and Asia suffer heavy losses |
|  | No 3 | World insurance in 2008: life premiums fall in the industrialised countries strong growth in the emerging economies |

## Published by

Swiss Re Institute
P.O. Box

8022 Zurich
Switzerland

| Telephone | +41432852551 |
| :--- | ---: |
| Fax | +41432820075 |
| E-Mail: | sigma@swissre.com |

## Armonk Office

175 King Street
Armonk, NY 10504
Telephone +19148288000
Hong Kong Office
18 Harbour Road, Wanchai
Central Plaza, 61st Floor
Hong Kong, SAR
Telephone +85225825644

## Authors

| Lucia Bevere |  |
| :--- | :--- |
| Telephone | +41432859279 |

Rajeev Sharan
Telephone $\quad+918049002172$

| Sarah Barrett |  |
| :--- | :--- |
| Telephone | +19148288491 |

Caspar Honegger
Telephone +41432856014

## sigma editor

Paul Ronke
Telephone +41432852660

## Editor in chief

## Kurt Karl,

Chief Economist of Swiss Re
is responsible for the sigma series.

Explore and visualise sigma data on natural catastrophes and the world insurance markets at www.sigma-explorer.com
© 2017 Swiss Re. All rights reserved.
The editorial deadline for this study was 10 February 2017.
sigma is available in English (original language), German, French, Spanish, Chinese and Japanese.
sigma is available on Swiss Re's website: www.swissre.com/sigma

The internet version may contain slightly updated information.

Translations:
German: Diction AG
French: ithaxa Communications SARL
Spanish: Traductores Asociados Valencia S.L.
Graphic design and production:
Corporate Real Estate \& Services / Media Production, Zurich
Printing: Multicolor Print AG, Baar


This report is printed on sustainably produced paper. The wood used comes from forest certified to $100 \%$ by the Forest Stewardship Council (FSC).

The entire content of this sigma edition is subject to copyright with all rights reserved. The information may be used for private or internal purposes, provided that any copyright or other proprietary notices are not removed. Electronic reuse of the data published in sigma is prohibited.

Reproduction in whole or in part or use for any public purpose is permitted only with the prior written approval of Swiss Re Institute and if the source reference "Swiss Re, sigma No 2/2017" is indicated. Courtesy copies are appreciated.

Although all the information used in this study was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the information given or forward looking statements made. The information provided and forward-looking statements made are for informational purposes only and in no way constitute or should be taken to reflect Swiss Re's position, in particular in relation to any ongoing or future dispute. In no event shall Swiss Re be liable for any loss or damage arising in connection with the use of this information and readers are cautioned not to place undue reliance on forward-looking statements. Swiss Re undertakes no obligation to publicly revise or update any forward-looking statements, whether as a result of new information, future events or otherwise.

Swiss Re Institute
Mythenquai 50/60
P.O. Box

8022 Zurich
Switzerland

Telephone + 41432852551
Fax +41432820075
sigma@swissre.com
www.swissre.com


[^0]:    From hereon, "total economic losses" expressed as "economic losses"
    2 Value taken from CatlQ data set.
    ${ }^{3}$ Government of Haiti helps 1.4 million persons affected by Hurricane Matthew with CCRIF's Payouts, CCRIF SPC, 7 November 2016, http://www.ccrif.org/news/government-haiti-helps-14-million-persons-affected-hurricane-matthew-ccrif-payouts

[^1]:    Numbers above the bars denote the number of wildfire events.

[^2]:    ${ }^{12}$ Data from Natural Resources Canada, http://www.nrcan.gc.ca/energy/oil-sands/18085

[^3]:    13 "Landslides and Landslide dams caused by the Kaikoura Earthquake", geonet.org.nz, November 2016, http://info.geonet.org.nz/display/quake/2016/11/18/Landslides+and+Landslide+dams+caused+by+ he+Kaikoura+Earthquake
    ${ }^{14}$ Emergency Assistance for Recovery from Tropical Cyclone Winston, Asian Development Bank, June 2016, https://www.adb.org/sites/default/files/project-document/185540/50181-001-rrp.pdf

[^4]:    15 "Deadly earthquake in Tanzania (also felt in Uganda, Rwanda and Kenya)", earthquake_report.com, 10 September 2016, http://earthquake-report.com/2016/09/10/strong-earthquake-lake-victoria-region-on-september-10-2016/
    16 "Damage and losses to residential buildings during the Canterbury earthquake sequence", nzsee.org.nz, 2016 http://www.nzsee.org.nz/db/2016/Papers/O-04\%20Horspool.pdf

[^5]:    17 2016: A historic year for billion-dollar weather and climate disasters in US, climate.gov, 9 January 2017. https://www.climate.gov/news-features/blogs/beyond-data/2016-historic-year-billion-dollar-weather-and-climate-disasters-us

[^6]:    18 "How US inland flood became a peak peril", carriermanagement.com, 25 July 2016, http://www.carriermanagement.com/features/2016/07/25/156981.htm?bypass=c5c8e489f258184 e403c97515bf8c4b2

[^7]:    ${ }^{19}$ FEMA's 2017 Reinsurance Program Better Manages Future Flood Risk, FEMA, 3 January 2017, https:// www.fema.gov/news-release/2017/01/03/femas-2017-reinsurance-program-better-manages-future-flood-risk

[^8]:    Source: Cat Perils and Swiss Re Institute

[^9]:    Source: Cat Perils and Swiss Re Institute.

[^10]:    20 Property and business interruption, excluding liability and life insurance losses;
    US natural catastrophe figures based on Property Claim Services (PCS)/incl. NFIP losses (see "Terms and selection criteria" on page 42).
    ${ }^{21}$ Dead and missing.

[^11]:    22 Dead and missing
    23 Property and business interruption, excluding liability and life insurance losses.

[^12]:    Source: Swiss Re Institute

[^13]:    ${ }^{24}$ Natural catastrophes in the US: those sigma figures which are based on estimates of Property Claim Services (PCS), a unit of the Insurance Services Office, Inc (ISO), are given for each individual event in ranges defined by PCS. The estimates are the property of ISO and may not be printed or used for any purpose, including use as a component in any financial instruments, without the express consent of ISO
    ${ }^{25}$ The losses for 2016 were converted to USD using these exchange rates. No losses in any other currencies were reported

